t Big-O Ain’t What it Used to Be

unix weapons school

1 CC3.0 share- Llll\ attribution
copyright ©) 201 nick black

\ . l-

Asymptotic notation review I

Asymptotic analysis gives us a means of speaking of arbitrarily
large growth, independently of arbitrarily (but finitely) large
costs not associated with problem size.

[Notation \ Name Definition \ Introduced
f(n) € O(g(n)) | Big O 3k > 0,3ng,Vn Paul Bachmann
n>ny = f(n) <g(n)=*k (1894)
f(n) € o(g(n)) | Small O Vk > 0,3ng,Vn Edmund Landau
n>no = |f(n)] <|g(n)[*k | (1909)
f(n) € ©(g(n)) | Big Theta Jk1 > 0,3k2 > 0,3np,Vn Donald Knuth
n>ny = g(n)*k < f(n), (1976)

f(n) < g(n) * kp

f(n) € w(g(n)) | Small Omega | Vk > 0,3ng,Vn Donald Knuth

n>ng = |f(n)| 2]g(n)|*k | (1976)
f(n) € Q(g(n)) | Big Omega 3k > 0,3ng,Vn Donald Knuth
n>ny = f(n)>g(n)=*k (1976)

Advances in (finite) computing technology can only reduce these ignored costs.
Wrap the earth with your register file, and still there will be numbers so large that
their addition is ©(n).

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Asymptotic notation review II

[Class (all cx >1) | Name | Example
O(1) Constant Is word-sized unsigned int n a power of 27
O(lg,, lg., n) Double-log Interpolative search on uniform distribution
O(lg, n) Logarithmic | Binary search
O(nlgn) = O(lgn!) | Linearithmic | FFT
O(n°) Polynomial Primality testing
O(c™) Exponential | Brute-force Boolean equivalence
O(n!) Factorial Unrestricted permutations of a poset
(9(052) Double-exp Presburger arithmetic decision best case

Speaking of still faster growth rates! (hyper-exponential, A) is mostly zoology.

L Check out “fast-growing hierarchies” and the LobWainer hierarchy.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

It’s the constants, stupid

Algorithmic choices can dominate performance, especially at
scale. By the definition of Big O, it should also be obvious that
an asymptotically superior algorithm can be slower for small
inputs?.

That said, no one’s going to think implementing a routing table
with a linked list is a good idea.

Furthermore, asymptotic analysis speaks of performance as
problem size grows. It doesn’t speak of real-time. It doesn’t
speak of bounded memories. We rarely speak of piecewise
asymptotics.

But, by all means, do ensure you're not doing linear searches on
sorted data etc.

2We will see that small inputs can be surprisingly large.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

What’s hiding behind O7?

Naive square (nXn X nXn) matrix multiplication is ©(n?).

k
C=AB = (= Z A B (1)

m=1

Counting the explicit additions and multiplications, there are
precisely 2n? “operations”.

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Fused multiply-add

TEEE 754-2008 floating point support requires FMA, fused
multiply-add. Let rn() denote a rounding operation. Typically, a
multiply-add chain requires two instructions, and rounds twice:

MAC(A, B, C) = rn(rn(A x B) + C) (2)

Fused multiply-add rounds only once, preserving the fully precise
product in an internal register:

FMA(A,B,C)=rn(A*x B+ () (3)

AMD’s FMA4 (Bulldozer) implements a fully general SIMD FP
FMA. Intel’'s FMA3 (Haswell, as part of AVX2; also in AMD’s
Piledriver) implements a destructive SIMD FP FMA3. The
throughput and latency are equivalent to standard single SIMD FP
adds and multiplies. NVIDIA’s Fermi likewise introduced a
full-throughput FMA.

There are now precisely n® “operations”.

3AMD’s XOP further implements an SIMD integer FMA.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Wide issue

192-entry Reorder Buffer

B0-entry Unified Reservatic

Pont2 Port3

Integer Store
ALU/Shift | Address

FMA FMA Ful

Haswell can issue and retire 2 VEMADD* instructions per cycle.
»4

There are now precisely n3/2 “operations

4Assuming that two operations are available every cycle.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

0.0 [Xmme
""""""""""" ymme]
.0 xmml
..................... ; ;1;1.1.---_---_---_---_---_
.0 l xmml4
"""""""""" ymmids
.0 |_ Xxmml5
.................... ;-n:mi;“““““““““-

AVX uses the 16 256-bit YMM registers. There are 8 32-bit IEEE 754-2008
single-precision values in a 256-bit input.

There are now precisely n®/16 “operations”®.

5 Assuming that values are usable in 256-bit chunks.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Multicore

153

- —

| 9
i

Haswell will likely debut in a quadcore physical package.
There are now precisely n? /64 “operations” ®.

a . L . .
Ignoring communication costs, and assuming perfect parallelism.

(rh

Memory accesses

Q@ Vi,0<i<n:Read row 7 from A into a
Q@ Vj,0 <j < n:Read column j from B into b, read Cj; into ¢
@ Vk,0 <k < n:Store ag * by + ¢ into Cy

@ n? loads from A
@ n? loads from B
@ n? loads from C
@ n? stores to C
Counting the loads and stores, there are precisely n3 + 3n?

. 3
memory accesses. There are now precisely 622 + 3n2
“operations”.

Arithmetic __ 9
n—soo Memory

lim

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Loads and stores

Hong and Kung proved in 1981 that any schedule of

. 3 2
conventional matrix multiplication must transfer Q(%), Z <%
words between slow and fast memory. Tiling is the optimal
strategy.

Of course, AVX’s VMOVAPS moves 256 bits, or 8 32-bit single
precision floating point words, at a time. And there’s 4 cores.
With two load/store pipes each. So that’s Qg /645.

Of course, we’re not going to be able to pack two VFMADDPS
and two VMOVAPS instructions into every 16B/c I$ fetch”.

How does this interact with register banking? Multilevel
caching? TLBs? Page cache? Prefetching? DRAM banking?
Multilevel disk? Logical cores? Other physical cores? NUMA?

6Assuming that the values are located in aligned, contiguous 256-bite chunks in memory.
Wait. .. we can use VMOVUPS if they’re unsuitably aligned.

7VEX—encoded VMOVAPS tends to run ~5 bytes.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

U FFFFFFFFFFFFFFFFFFFFFFUUUUUUUUUUUUUUUUUU ’ U
We’ve not yet mentioned branching.

(CS4803 Spring 2010 Lab 3—All O(n?)

Core 2 Duo 6600 (2.4GHz) + GeForce 8400 GS G98 PCI (567MHz)

4 T —— —r T —
Reference via GPU —+—
35 Blocked —%— i
’ Constant Memory —¥—
Texture Memory
3 Pinned Memory —li— -
cudaMemset —6—
. reglé
8 2.5 - Reference via CPU —&— 7
5 final
@
& 2r 7
(]
£
F 15 -
l (— -
*
05 - _
0 S il L Lol = L
100 1000 10000 100000 1e+06 1e+07 1e+08

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

ATLAS Unleashed—All 0 (n3) Image source: Richard Vuduc’s CSE6230

lterative, Iterative, Mini, ATLAS, Unleashed, 168 Ultrasparc Illi
lterative, Iterative, Mini, ATLAS, CGwS, 44 - e 2000
lterative, Iterative, Mini, Coloring, BRILA, 120 ! ! ! !
Iterative, Iterative, Micro, Coloring, BRILA, 120 -
Recursive, lterative, Mini, ATLAS, Unleashed, 168 —+—
Recursive, lterative, Mini, ATLAS, CGwS, 44 v
Recursive, lterative, M|n| Coloring, BRILA, 120 o " _——
Recursive, Iterative, Micro, Coloring, BRILA, 120« pElEISE e s S A aand
Recursive, Recursive, Micro, Coloring, BRILA, 8 o Faad
Recursive, Recursive, Micro, Belady, BRILA, 8 o 4
Recursive, Recursive, Micro, Scalarized, Compiler, 4 © 1500 1% -
Recursive, Recursive, Micro, None, Compiler, 12 —e— ,I
Iterative, Slztement None, None, Compiler, 1 e
Recursive, Recursive, Micro, None, Compiler, 1 ---@ v By et A e ADONN N o
Outer Control Structure [
[M '.‘,'v» T3
3
Iterative Recursive & 1000 F A o 4
S seetetyey LT T YN PR
Inner Control Structure
Mo 060000560000000 2%gqg
[Statement| Recursive lIterative booc(,oooooooo%eoo bes0
{1}
. 500 | {g G
Mini-Kernel # 8
[a ©-g-©
G
| - - -~ -
Micro-Kernel ATLAS CGW/S oo 6068
ATLAS Unleashed |
2
I Ny ! !

0 1000 2000 3000 4000 5000
Matrix Size

Coloring /
BRILA

Scalarized
Compiler

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

RAPTORIAL-file

Image source: Dirty South Supercomputing and Waffles

In the pure systems space, O makes still less sense.
What’s O of multithreaded file lexing?

apt-fle(1) vs raptorial-fle(1)

W Sprezz0S

Seconds
less is
berter)

B Debian

"compiz" "a" "fbin/" "/binfrapt"

Use Cases (418MB of content files)

Core i7 2600K (all data sets fit in memory)

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

R,APT—ShOW—VGI'SiOH Image source: Dirty South Supercomputing and Waffles

Nonetheless, optimization can be very fruitful.
apt-show-version(1) vs rapt-show-version(1)

Wsprez0s
Wocbian

Bare
Use Cases (101MB of package lists)
Core i7 2600K (all data sets fit in memory)

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Analysis-driven optimization I

samples pcnt kernel function
12022.00 - : read hpet
1766.00 - : _spin_lock irgsave
1262.00 — 4.7% : acpi_os_read port
1209200 — 5% : hpet next event
410.00 - schedule
280.00 — 1.0% : do_sys poll
273.00 — 1.0% : sched clock local
265 .00 — Lz{ : fget_light
241.00 - .9% : native read tsc
23700 — .9% : spin lock

- 0% = spin unlock irgrestore

High-level (“Macroanalysis”)

Coarse tools and algorithmic reasoning, e.g.:
Ensure sufficient task-level parallelism
Ensure cores aren’t overutilized

Profiler-driven hotspot location

High-level memory and I/0O flow

at the Georgia Institute of Technolo Big-O Ain’t What it Used to Be

Analysis-driven optimization II

w2 TuLLoRO.Vp Lo - > oo | mm USLan Giapi
161.7 ms 161.8 ms 161.9 ms 162 ms cuDAkernel1DCT(float, int, int, int)
[l Process: 11119 Name Value
(=] Thread: -1484415584 — —
Runtime API -
Driver API Duration 106.132 s
[l [0] GeForce GTX 480 Grid Size [64,64,1]
[= context 1 (cupa) Block Size [881]
T MemCpy (HtoD) Registers/Thread 14
W MemCpy (DtoH) shared Memory/Block 512 bytes
T MemCpy (DtoD) - - Memory
& Compute .
T 0.7% [101] CUD... Global Load Efficiency nja
7 0.3% [10] CUDAK... Global Store Efficiency 100%
¥ 0.0% [2] CUDAKe... DRAM Utilization 10.9% (18.4
¥ 0.0% [1] CUDAke... - Instruction

¥ 0.0% [1] CUDAKe...
¥ 0.0% [1] CUDAKe...
T 0.0% [1] CUDAke...
¥ 0.0% [1] CUDAKe...

Branch Divergence Overhe; 0%
Total Replay Overhead & 51%
Shared Memory Replay Ovi 0%

= Streams Global Memory Replay Ove & 51%

Stream 1 [CuDAkemeloua...|] cUDAKemel1IDCT(Moat int.. | wemepy Dtort tsynel—— LIl A IS

Local Cache Replay Overhe 0%
. - Occupancy
== Low-level (“Microanalysis”) -°
| .
. Performance counters and throughput-based reasoning, e.g.:

4 More..
waipr @ Vectorize e
Kernel | el

@ Tune for caches Sore.
Kernel |

o Watch for parchitectural stalls

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Complexity finds a way

1 iteration

2 lterations

3 terations

4 terations

A fractal having Hausdorff dimension 2,
the space-filling Peano curve is used in cache-oblivious algorithms.

Mastering the complex modern design space
requires deftly switching between theoretical
analysis, guided experiment, and pure exploration.

This class is about doing so.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

: J\,N Lo r\fﬂu&(8
b& _.Jﬂjviv OKAIW/Q ﬂ m’

5N by ?e Y
\N?&Jfgﬂ
3 ; g}ﬁ ‘ Uelived ,um
g % frzg jo mw%ov\ vm
%.*a.é\\ \9& »Julu C‘ q%ﬁ krw . %d
A,ADS\?\)0 A.,c_s _/ c,)TQ
,u_yov Cuﬁ @
b g vl #\ZIJ\M_ INM«\N\ 0 np
,M..N opy
Bl (000 |
s (C) 2 ok Sz
ﬁ,)w m : ~
i e A ST g
Usbyp Je e Ut gy
Rt

(5 (et wbeo i
3 A\\b e Co 4 O\QQ

Q« N 3‘\.@§_ ¥ NQ TJ\\ {S\N
@ g [vz s ori il
o M\S\/ ﬂ}%ﬁb kav \%am&.\

Insert 1 / 3

CS4803UWS at the Georgia Institute of Technology

Big-O Ain’t What it Used to Be

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Be

%E,JW m\:w»c@ rsa& h/u ;
foipw (toovo h/ﬁcw% v ¢

Big-O Ain’t What it Used to

4m~ u O\EC/ qu X e ,C?
vg.&/ui L/)xf Cﬁ(r\S\V\ Ciﬁ?é_k{

wvb ﬂcw@@ ! .

CS4803UWS at the Georgia Institute of Technology

Recommended reading

Hong and Kung. “I/O complexity: The red-blue pebble game” (1981).

@ Yotov et al. “An experimental comparison of cache-oblivious and cache-conscious
programs” (2007).

@ Irony et al. “Communication Lower Bounds for Distributed-Memory Matrix Mul”
(2004).

@ Goto et al. “Anatomy of High-Performance Matrix Multiplication” (2008).

@ Kalyanasundaram et al. “Improved Simulation of NTMs” (2011).

@ Francois Le Gall. “Faster Algorithms for Rectangular Matrix Multiplication” (2012).

@ Eric Quinnell. “Floating-Point Fused Multiply-Add Architectures” (2007).

@ Tom Leighton. “Better Master Theorems for Divide-and-Conquer Recurrences” (1996).

@ Intel Instruction Set Extensions Programming Reference

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

