
Big-O Ain’t What it Used to Be

CC3.0 share-alike attribution

copyright c© 2013 nick black

Asymptotic notation review I

Asymptotic analysis gives us a means of speaking of arbitrarily
large growth, independently of arbitrarily (but finitely) large
costs not associated with problem size.

Notation Name Definition Introduced

f (n) ∈ O(g(n)) Big O ∃k > 0, ∃n0,∀n
n > n0 =⇒ f (n) ≤ g(n) ∗ k

Paul Bachmann
(1894)

f (n) ∈ o(g(n)) Small O ∀k > 0, ∃n0,∀n
n > n0 =⇒ |f (n)| ≤ |g(n)| ∗ k

Edmund Landau
(1909)

f (n) ∈ Θ(g(n)) Big Theta ∃k1 > 0,∃k2 > 0,∃n0, ∀n
n > n0 =⇒ g(n) ∗ k1 ≤ f (n),
f (n) ≤ g(n) ∗ k2

Donald Knuth
(1976)

f (n) ∈ ω(g(n)) Small Omega ∀k > 0, ∃n0,∀n
n > n0 =⇒ |f (n)| ≥ |g(n)| ∗ k

Donald Knuth
(1976)

f (n) ∈ Ω(g(n)) Big Omega ∃k > 0, ∃n0,∀n
n > n0 =⇒ f (n) > g(n) ∗ k

Donald Knuth
(1976)

Advances in (finite) computing technology can only reduce these ignored costs.

Wrap the earth with your register file, and still there will be numbers so large that

their addition is Θ(n).

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Asymptotic notation review II

Class (all c∗ > 1) Name Example

O(1) Constant Is word-sized unsigned int n a power of 2?
O(lgc1 lgc2 n) Double-log Interpolative search on uniform distribution

O(lgc n) Logarithmic Binary search
O(n lg n) = O(lg n!) Linearithmic FFT
O(nc) Polynomial Primality testing
O(cn) Exponential Brute-force Boolean equivalence
O(n!) Factorial Unrestricted permutations of a poset

O(ccn
2

1) Double-exp Presburger arithmetic decision best case

Speaking of still faster growth rates1 (hyper-exponential, A) is mostly zoology.

1Check out “fast-growing hierarchies” and the LöbWainer hierarchy.

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

It’s the constants, stupid

Algorithmic choices can dominate performance, especially at
scale. By the definition of Big O, it should also be obvious that
an asymptotically superior algorithm can be slower for small
inputs2.

That said, no one’s going to think implementing a routing table
with a linked list is a good idea.

Furthermore, asymptotic analysis speaks of performance as
problem size grows. It doesn’t speak of real-time. It doesn’t
speak of bounded memories. We rarely speak of piecewise
asymptotics.

But, by all means, do ensure you’re not doing linear searches on
sorted data etc.

2We will see that small inputs can be surprisingly large.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

What’s hiding behind O?

Naive square (nXn X nXn) matrix multiplication is Θ(n3).

C = AB =⇒ Cij =
k∑

m=1
AimBmj (1)

Counting the explicit additions and multiplications, there are
precisely 2n3 “operations”.

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Fused multiply-add

IEEE 754-2008 floating point support requires FMA, fused
multiply-add. Let rn() denote a rounding operation. Typically, a
multiply-add chain requires two instructions, and rounds twice:

MAC (A, B, C) = rn(rn(A ∗ B) + C) (2)

Fused multiply-add rounds only once, preserving the fully precise
product in an internal register:

FMA(A, B, C) = rn(A ∗ B + C) (3)

AMD’s FMA4 (Bulldozer) implements a fully general SIMD FP
FMA. Intel’s FMA3 (Haswell, as part of AVX2; also in AMD’s
Piledriver) implements a destructive SIMD FP FMA3. The
throughput and latency are equivalent to standard single SIMD FP
adds and multiplies. NVIDIA’s Fermi likewise introduced a
full-throughput FMA.

There are now precisely n3 “operations”.
3AMD’s XOP further implements an SIMD integer FMA.

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Wide issue

Haswell can issue and retire 2 VFMADD* instructions per cycle.

There are now precisely n3/2 “operations”4.

4
Assuming that two operations are available every cycle.

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

SIMD

AVX uses the 16 256-bit YMM registers. There are 8 32-bit IEEE 754-2008
single-precision values in a 256-bit input.

There are now precisely n3/16 “operations”5.

5Assuming that values are usable in 256-bit chunks.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Multicore

Haswell will likely debut in a quadcore physical package.
There are now precisely n3/64 “operations”a.

a
Ignoring communication costs, and assuming perfect parallelism.

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Memory accesses

1 ∀i, 0 ≤ i ≤ n : Read row i from A into a
2 ∀j, 0 ≤ j ≤ n : Read column j from B into b, read Cij into c
3 ∀k, 0 ≤ k ≤ n : Store ak ∗ bk + c into Cij

1 n2 loads from A

2 n3 loads from B

3 n2 loads from C

4 n2 stores to C

Counting the loads and stores, there are precisely n3 + 3n2

memory accesses. There are now precisely 65n3

64 + 3n2

“operations”.

Arithmetic intensity

lim
n→∞

Arithmetic
Memory = 2

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Loads and stores

Hong and Kung proved in 1981 that any schedule of
conventional matrix multiplication must transfer Ω(n3

√
Z), Z < n2

6
words between slow and fast memory. Tiling is the optimal
strategy.

Of course, AVX’s VMOVAPS moves 256 bits, or 8 32-bit single
precision floating point words, at a time. And there’s 4 cores.
With two load/store pipes each. So that’s ΩHK /646.

Of course, we’re not going to be able to pack two VFMADDPS
and two VMOVAPS instructions into every 16B/c I$ fetch7.

How does this interact with register banking? Multilevel
caching? TLBs? Page cache? Prefetching? DRAM banking?
Multilevel disk? Logical cores? Other physical cores? NUMA?

6
Assuming that the values are located in aligned, contiguous 256-bite chunks in memory.
Wait. . . we can use VMOVUPS if they’re unsuitably aligned.

7
VEX-encoded VMOVAPS tends to run ˜5 bytes.

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Argh

FFFFFFFFFFFFFFFFFFFFFFUUUUUUUUUUUUUUUUUUU

We’ve not yet mentioned branching.

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

CS4803 Spring 2010 Lab 3—All O(n3)

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

ATLAS Unleashed—All O(n3) Image source: Richard Vuduc’s CSE6230

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

RAPTORIAL-file Image source: Dirty South Supercomputing and Waffles

In the pure systems space, O makes still less sense.
What’s O of multithreaded file lexing?

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

RAPT-show-version Image source: Dirty South Supercomputing and Waffles

Nonetheless, optimization can be very fruitful.

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Analysis-driven optimization I

High-level (“Macroanalysis”)

Coarse tools and algorithmic reasoning, e.g.:

Ensure sufficient task-level parallelism

Ensure cores aren’t overutilized

Profiler-driven hotspot location

High-level memory and I/O flow

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Analysis-driven optimization II

Low-level (“Microanalysis”)

Performance counters and throughput-based reasoning, e.g.:

Vectorize

Tune for caches

Watch for µarchitectural stalls

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Complexity finds a way

A fractal having Hausdorff dimension 2,
the space-filling Peano curve is used in cache-oblivious algorithms.

Mastering the complex modern design space
requires deftly switching between theoretical
analysis, guided experiment, and pure exploration.

This class is about doing so.
CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Insert 1/3

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Insert 2/3

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Insert 3/3

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

Recommended reading

Hong and Kung. “I/O complexity: The red-blue pebble game” (1981).

Yotov et al. “An experimental comparison of cache-oblivious and cache-conscious
programs” (2007).

Irony et al. “Communication Lower Bounds for Distributed-Memory Matrix Mul”
(2004).

Goto et al. “Anatomy of High-Performance Matrix Multiplication” (2008).

Kalyanasundaram et al. “Improved Simulation of NTMs” (2011).

François Le Gall. “Faster Algorithms for Rectangular Matrix Multiplication” (2012).

Eric Quinnell. “Floating-Point Fused Multiply-Add Architectures” (2007).

Tom Leighton. “Better Master Theorems for Divide-and-Conquer Recurrences” (1996).

Intel Instruction Set Extensions Programming Reference

CS4803UWS at the Georgia Institute of Technology Big-O Ain’t What it Used to Be

