
your friend the computer (aka computer architecture)

CC3.0 share-alike attribution
copyright c© 2013 nick black

The purpose of a systems programmer

Given system S , and problem P,
we will implement P,
using the resources of S ,
subject to some constraint.

That constraint is typically to minimize either:

time to completion,

power to completion, or

time to completion · utilization.1

Proving that these constraints have been met is clearly dependent
upon the details of both P and S .

1Constrained by some minimum utilization.
CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Chasing peak

How can we know when we’re “done”? Absolute measurements
can be taken in terms of the system’s theoretical peak perf.

Peak is a slippery concept. What follows is my opinion:

“Peak” seems most precisely defined in terms of the ISA of S
(which might be irrelevant to our problem).
“Peak” seems most correctly defined in terms of the best
possible solution to P (which might be unknown).
“Peak” seems most productively defined in terms of the
instructions our actual implementation would use in the
absence of structural hazards.

In my experience, it is generally misleading to compare how closely
different P approach their own peaks. Most often, we use “peak”
within the context of a small section of code.
CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Synchronous processors

Start in some initial state, and evolve in discrete timesteps
according to some primitive recursive function closed on that state.

Each time step is a cycle(c). 1GHz =⇒ 1ns c-time (φ).

“Running a program” is the act of denoting words of this state as
“current instructions”, causing them to drive control flow.

Static instructions: Instructions in a sequence
Dynamic instructions: Instructions executed in a sequence
IPC: Instructions per c
CPI: c per instruction

Instructions lie at the boundary between those abstractions we
control, and those we merely exploit.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Minimizing time to completion

Means of reducing Ptime are finite:

Ptime = Instdynamic · CPIavg · ν (1)

1 Reduce c-time (better µarchitecture, better materials, ↑ VDD)
2 Require fewer instructions (SIMD, better code, better

algorithms, more powerful instructions, AQC)
3 Reduce CPI (better µarch, better code, VLIW/EPIC)
4 Add time (MIMD)

#1 is an exhausted technique. Understanding why will require a
detour into electrical engineering. Hold on tight!

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

c-time
Taken to the limit, we can run asynchronously (measured in FO4 inverter delays):

φ = φlogic (2)

Asynchronous circuits are hard, so we clock. Our clock period must be at least the
maximum logic time (the sum propagation delays along those gates and traces
composing the longest circuit in the system):

c = φlogicmax (3)

We’ll want to preserve our logic’s outputs, and use them as inputs. Latches have a
setup time and a hold time2, the sum of which constitutes latch delay:

c = φlogicmax + φlatch (4)

Our clock distribution network is less than ideal. We must allow for jitter3 (divergence
from the specified waveform4) and skew (differences in time of arrived signals):

c = φlogicmax + φlatch + φjitter + φskew (5)

2Also a contamination delay, which is critical to reading and writing a register in the same cycle.
3Phase jitter (absolute deviation), period jitter (∆n

φphase
t), and c-to-c jitter (∆n

φperiod
t).

4Typically a 50% duty-cycle square wave.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Moore’s Law

The number of transistors on an IC doubles every φMoore (i.e., transistor packing
grows exponentially). Chip area is decisively not growing exponentially, so transistor
areas must be shrinking.

w00t! More transistors means wider SIMD, more integrated functionality, bigger
on-die caches, more cores per physical package, or more physical packages per wafer
(with implied price savings). Less area per transistor means less capacitance means
less current required to switch means less time to switch (faster devices, w00t!)
means less work done means less power drawn means less heat dissipated5.

argh! Interconnect lines show greater resistance with reduced dimension. More
transistors, everything else being equal, mean more power draw6. When channel
length L ∼ depletion layer widths, short-channel effects7 come into play. Less junction
material amplifies the effect of dopant fluctuations8. Electrons tunnel more easily
across the oxide from gate to channel. Voltages must be reduced to combat HCI, but
carrier velocity ν = µSC E = µSC VDS

L =⇒ t = L
ν

= L2

µSC VDS
(slower devices, argh!).

But mainly w00t. Thanks, CMOS technologists!

5Which itself means lower-power, more reliable, faster (w00t!) devices.
6This can be more than offset by needing fewer cycles for a given problem.
7Effects like DIBL, velocity saturation, impact ionization, surface scattering, and dread hot carrier injection.
8Though dopant density goes up to combat CLM and thus DIBL.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Metal oxide semiconductors I

Let’s calculate negative MOS. With no mobile carriers, IDC = 0. V +
GS is applied to

the gate, attracting electrons as VGS exceeds the threshold voltage VTH , establishing
a salient. IDTL = µnC∗

oxnW
2L

[
2(VGS −VTH)VDS −V 2

DS

]
, growing linearly with VGS .

Once VDSat , VGS −VDTH ≥ VDS , a conducting channel exists from source to
drain, and IDSat = µnC∗

oxnW
2L [VGS −VTH]2. We call these three modes cutoff, linear,

and saturation. This switch requires discharging the charge in our nMOSFET:

τpHL ≈
charge onCL

2 ∗ NMOS discharge current
=

LnCLVDD

WnµnC∗
ox (VDD −VTH)2 (6)

Where appropriate, pMOS reverses the signs9.

9Using holes, not e+ (positrons).
CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Metal oxide semiconductors II

Drain and source are doped opposite the substrate. L is gap
between source and drain. W is width of source/gate/drain10.
Tox < 2nm. Circuit speed increases with increasing Ion which
increases with decreasing VTH .

nMOS
VGS ,VDS , ID are positive
Gate voltage VGS increases
Negative doping (n+)
e− is charge carrier
Current flows when output is low
Carries a strong 0 and a weak 1
Bulk connected to ground
ID is drain-to-source

pMOS
VGS ,VDS , ID are negative
Gate voltage VGS decreases
Positive doping (p+)
Holes are charge carrier
Current flows when output is high
Carries a strong 1 and a weak 0
Bulk connected to supply (VDD)
ID is source-to-drain

10W/L is known as the drain current capability.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

CMOS Inverter

We’d like timing and other properties to be independent of whether we’re going high
or low, and not to draw power in a steady state. Symmetric CMOS inverters
(VTn = |VTp | and Kn = Kp (Kfoo,ox ,

µfooκox
Tox

(µ = electron mobility in foo,
κ = relative permittivity in ox, and T = thickness of insulator oxide ox))) draw power
only while switching, maximize use of clocks, and require only a pMOS and nMOS
transistor in series.

VIN = 0 =⇒ VOUT = VDD

VGSn = 0 < VTHn

=⇒ nMOS off
VSGp = VDD > −VTHp

=⇒ pMOS on

VIN = VDD =⇒ VOUT = 0
VGSn = VDD > VTHn

=⇒ nMOS on
VSGp = 0 < −VTHp

=⇒ pMOS off

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Digital logic

RTL TTL pMOS nMOS CMOS

Given inverters, we can build (functionally complete) NORs and NANDs11. . .

. . . given NORs and NANDs, we can build universal computers. . .

. . . and now we’re getting somewhere. Delicious!

11CMOS NOR/NAND in 4 transistors each; TTL multiemitters requires 5 for NOR vs. 4 for NAND.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

CMOS dynamic power

Draw greatest power only when changing state. . . 12

Pdynamic = αCLV 2
DDν (7)

P Dynamic power (W = J/s = m2·kg
s3)

CL Load capacitances (F = A2·s4

m2·kg)
α Activity factor

VDD Supply voltage (V = m2·kg
A·s3)

ν Frequency (1/s)

NB: Pdynamic increases with the square of VDD.

12Though, as ν →∞, Tswitching
Ttotal

→ 1. . .

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

CMOS static power

. . . but always consume some power:

Pstatic = Istatic ·VDD (8)

P Static power (W = V ·A)
Istatic Static current (Isubth

13 + Itunnel
14 + Ileakage

15,A)
VDD Supply voltage (V)

This has become more important as transistor count has increased
and sizes have shrunk, both for reasons mentioned earlier and
because dynamic power has fallen.

Implication: power draw is independent of actual state.
Implication: for fixed work, lower ν usually cannot save power.

13Leakage between MOS source and drain
14Leakage across semiconductor junctions
15Leakage through the insulator

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

10GHz: don’t hold your breath

Why do we care?

General purpose processors won’t see large ν increases16.

Recall that c-time > φlogicmax . Reducing the maximum logic delay
(without sacrificing computational power per instruction) generally
requires pipelining. As we add pipeline stages, we lose more and
more c to |stage|-bounded delays, especially branch mispredictions.

Power requirements for clock distribution increase linearly with
frequency. As does dynamic power draw. As does CPI. Jitter
tolerances are approached more closely. These lost c are not free.

Frequency cannot hide non-computational delay. A 800ns off-die
access is 800ns no matter one’s frequency.

16In the absence of serious overclocking, anyway.
CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Instruction set architecture

Fully generally, instructions map input states to output states.
A machine could contain in ROM a lookup table containing every
possible function from 2n∗word =⇒ 2m∗word. Each instruction
specifies inputs, outputs, and a map selection17.

A machine could allow each instruction to specify a single lookup
table implementing a single such map18.

“Arithmetic MISC” provides universal computation via a single
arithmetic instruction operation, memory addresses, and a
conditional branch target in every instruction.

“Transport-triggered MISC“ (sometimes called ZISC) involves
memory-mapped functional units and a branch. All MISC schemes
require the ability to modify one’s own code19.

17Calculate this ROM’s size, and the minimum instruction size.
18Calculate the minimum necessary instruction size.
19Prove this.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Special registers

Often read-only/privileged/require special instructions.
EIP: Read-only. Instruction pointer
EFLAGS: Flags register. Contains IOPL/CPL (POPF/IRET)
CR0: Machine Status Control Word (LMSW, 286+)
CR2: Read-only. Page fault addresses (386+)
CR3(PDBR): Page Directory Base Reg. (386+)
MXCSR SSE Control Status Reg. (LD/STMXCSR, PIII+)
DR0,DR1,DR2,DR3,DR7: Debug Reg.
CS,DS,ES,FS,GS, SS: Segment Reg.
TR: Task Register (LTR/STR)
GDTR: Global Descriptor Table Reg. (LGDT/SGDT, 286+)
LDTR: Local Descriptor Table Reg. (LLDT, 286+)
IDTR: Interrupt Descriptor Table Reg. (LIDT/SIDT, 286+)
TPR: Task Priority Reg.
PPR: Process Priority Reg.
TSC : Timestamp Counter (RDTSC, Pentium+)
PMCn : Performance Monitoring Counters (RDPMC, MMX+)
MSRn : Model-Specific Reg. (RD/WRMSR, Pentium+)

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

General-purpose registers

Read ports pace superscalability
Write ports pace instruction retire
Register width paces bit parallelism
Architectural registers pace memory accesses
Physical registers pace OOO hiding of false dependency

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Register file (indexed access)

Architectural registers are exposed as PRAM or a stack
SRAM cells + read/write lines + decoder tree + sense amps
One internal bit line per bit of read port
Two internal bit lines per bit of write port
One word line per entry
Transistor area grows linearly with number of ports
Wire pitch area grows with square of number of ports
Hence: register banking

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Fundamental theorem of data starvation

We can only hit peak during sequences of code which fully utilize
arithmetic resources. Registers must provide throughput at least
equivalent to the processor’s arithmetic throughput.20

THUS, a memory lacking throughput greater than or equal to the
ratio of arithmetic/register throughput to arithmetic intensity (c
per word) will not be able to sustain peak.

20In a classic load/store RISC architecture, arithmetic instructions operate only on registers. In a machine
admitting memory addresses as inputs to arithmetic operands, such instructions will exhibit greater latency and
lesser throughput than their register-direct counterparts (though not always; see Intel NetBurst/Core “µ-fusion”).

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

FRONTEND

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Sandy Bridge frontend

The modern x86 frontend is tremendously complicated21 due to its
inherited ISA, yet it manages to deliver µops to the superscalar
dataflow-ordered execution core at full throughput. How?

16B/c fetches from 32KB 8-way22 I$
Speculative decoding at each of fetch’s 16B
1 complex decoder, 3 simple decoders
32 sets of 8 ways of 6 µop µI$ (“decoded I$”)
28µop µL$ (“Loop stream detector”) per thread23

4µop/c renamer-scheduler
Macro- and µ-fusion

21Indeed, it is this dense frontend which made things like 31-stage pipelines even feasible (Northwood’s
“execution” cycle was 17 of 20). The Loop Stream Decoder (present since Nehalem) effectively shortens the
pipeline by bypassing the decoding frontend.

224-way on Nehalem
23On HyperThreaded Ivy Bridge, 56 µops if one logical core is inactive.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Frontend delays

Instruction fetch miss (7c for ITLB miss + 2TLB hit)
3c for each non-REX length changing prefix24

Instruction decode delay / MSROM access
Reservation stations full / ROB full
Self-modifying code flushes all pipelines/cache

We cannot have more instructions in flight than we have ROB
entries. We cannot have more instructions for a given set of ports
in flight than we do reservation stations at those ports.

246c for any fetch containing an LCP on Nehalem
CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Superscaler

An ALU contains numerous functional units—address generation,
shifting, basic arithmetic, etc. The transistor budget for functional
logic is typically dwarfed by that of cache25.
It would be reasonable, then, to execute multiple instructions at a
time (not staggered, as in a pipeline, but truly synchronously).
This ought be possible so long as

There are no true dependencies between the instructions, and
The instructions use different functional units

Analyzing the instruction stream for such dependencies would add
to our φlogicmax , increasing c-time and reducing frequency26.
Attempts—EPIC/VLIW—were made to have the compiler perform
this analysis itself. Compiler technology was (is?) not up to the
task, due largely to the difficulty of modeling varied caches.

25This is not true on manycore architectures such as NVIDIA’s CUDA.
26There would also be a cost in transistors, of course.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

BACKEND

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Pipelines

In and of itself, pipelining does not improve performance. A scaler
pipelined processor continues to retire, at best, 1 instruction per c.

The advantage of pipelining is that, by reducing the number of
gates and traces a signal travels in a c, we reduce φlogicmax , and
can thus increase ν, increasing our available c per unit time. Also,
it can hide absolute delays27, such as the dependency analysis
necessary for compiler-oblivious superscaler operation, or the
complicated decoding necessary for x86 instructions.

We pay28 for these extra c whether we can exploit them or not.
The effects of delays are amplified; a 400ns off-die DRAM access
blocks for 200c at 500MHz, but 1200c at 3GHz.

The techniques by which the execution plane is kept full are
collectively known as out-of-order execution.

27Upon reaching steady state.
28When the processor is running at full frequency, anyway.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

The dataflow limit

Can we describe an ideal von Neumann/Harvard machine?
Infinitely many registers
Infallible branch prediction
Infallible dealiasing
Single-cycle, non-blocking caches
Infinitely many issues/retires per c

This processor will proceed governed only by true dependencies; we
call this the dataflow rate29.

29Value prediction has been studied to exceed the dataflow rate. It’s not very awesome.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Out of order execution

Register renaming eliminates WAW/WAR hazards
Branch prediction generates branch statuses earlier
Target prediction generates branch targets earlier
Speculative execution performs work based on predictions
Predication is branchless conditional execution
Disambiguation allows loads and stores to be reordered

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Backend delays

Store forwarding stalls / memory intermediates
Data migration across execution domains
False dependencies due to flag regs / partial regs
Retirement station bandwidth exceeded

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Why we fall short of peak

Cause Penalty Ameliorations
Reduced-throughput instructions ≤ ALU pipeline length Str. reduction / pipeline ALU

L1 cache hit Very few c Multiport/pipelined L1
False dependency Handful of c Register renaming

True / unrenamable dependency Handful of c Value prediction, OOO
Decoding/execution/retirement stalls Handful of c More/better hardware

Startup / pipeline flush Pipeline length Shorten pipeline
Branch misprediction ~Pipeline length Branch prediction, µcaches,

predication, shorten pipeline
L1 D$ miss (L2 D$ cache hit) ≤ L2 time (<10c) Faster L2, bigger L1,

non-temporal L/S, OOO
L1 I$ miss (L2 I$ cache hit) L2 time (<10c) Faster L2, bigger L1

Procedure call Dozens of c Register windows, inlining
System call Hundreds of c Call gates

L2 cache miss Memory access time Bigger/better L2
Thread switch

TLB miss
Process switch

Access resident page via MMU Hundreds of c Larger caches, better bus
Bus lock (atomics, UC accesses30) Bus + exclusion Coherence protocols

Access faulted page via DMA+MMU
Load via FSB PIO
Mutual exclusion Arbitrary Transactional memory, RCU

30Including pagewalks of uncacheable tables.
CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Optimization methodology Adapted from the Intel Optimization Manual

Are we hitting peak? If not, let’s account for each cycle:

Are we fully utilizing the system?
No. Why not?

Contention among threads?
Blocking on I/O?
Incomplete exploitation of multiple processors / SIMD?

Yes. Are we issuing µops?
No. What’s causing our frontend stall?

Store-forwarding?
LCP delay?
Cache miss?

Yes. Are we retiring µops?
No. What’s clogging our backend?

Branch mispredictions?
Dependency chains?

Yes. Look for strength reduction or new algorithms.
CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Recommended reading

Andi Kleen. “Linux multi-core scalability” (2009).
Doug Carmean and Eric Sprangle. “Increasing Processor Performance by
Implementing Deeper Pipelines” (2002).
Ulrich Drepper. “What Every Programmer Needs to Know About
Memory” (2007). Linux Weekly News, in eight parts.
Paul McKenney. “Transactional Memory Everywhere” (2012).
Ward and Halstead. “Computation Structures” (1990).
Fisher et al. Embedded Computing: A VLIW Approach (2004).
John Shen and Mikko Lipasti. Modern Processor Design (2004)
and “Exceeding Dataflow Limit via Value Prediction” (1996).
Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers
(regularly updated). http://www.agner.org.
Bruce Shriver and Bennett Smith. The Anatomy of a High-Performance
Microprocessor: A Systems Perspective (1998).
Intel 64 and IA-32 Architectures Optimization Manuals.

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

Hack on!

“The purpose of abstraction is not to be vague, but to create a
new semantic level in which one can be absolutely precise.”

—Edsger Dijkstra

“The most amazing achievement of the computer software industry
is its continuing cancellation of the steady and staggering gains
made by the computer hardware industry.” —Henry Petroski

“First you learn the value of abstraction. Then you learn the cost
of abstraction. Then you’re ready to engineer.”

—Kent Beck

CS4803UWS at the Georgia Institute of Technology Your Friend the Computer (aka computer architecture)

