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PART I
NETWORKING IS A HOUSE DIVIDED



A DICHOTOMY OF NETWORKED ENTITIES

Some networked devices exist almost entirely to serve exactly one function. 
Performance is maximized by allowing that one application full use of the machine 
and network.

Other devices offer unpredictable, diverse functionality. They provide fairness 
among applications, but introduce overhead such that it is impossible for any one 
task to reach this peak performance.

 



THE MINIMAL, IDEAL NETWORK

Two nodes.

One application per node.

Infinite buffering.

Reliable transport.

In this happy model, there is no need for a protocol.

No addresses. No ports. No headers. No packets. Full utilization of the channel. 



Look on my works,
ye Mighty,
and despair!



ARISTA 7508r3

230Tbps switching capacity

9.6Tbps per line card

288x 400Gbps ports

at half a megadollar USD, sadly 
unsuitable for personal projects.



HISTORY IS A NIGHTMARE FROM WHICH I AM TRYING TO AWAKE

Traffic grows to fill the network. Application programmers convert the wins of 
systems programmers and hardware designers into raytraced cat pictures. 

Performance is always paramount. Every cycle matters.

The history of networking is an unceasing struggle to fully utilize hardware, 
seeking both to maximize a given flow's performance, and to maximize the overall 
performance of many flows, while dodging javascript cats yeeted from userspace 
and being DDoSed by teenage botnet operators.



ADDRESSING: BEYOND THE CROSSBAR

As nodes are added to the network, a complete 
graph quickly becomes impractical.

Remove underutilized edges, routing that traffic 
instead through large primary connections. Now 
you've got trunks, making up a backbone.

Less total capacity, better utilization, lower cost.

Possibility of indirect transfer mandates addresses 
(a one-time header), our first source of overhead.



PACKET SWITCHING: SCREW KANSAS

Baran 1960, Davies 1965: we can better utilize 
this network by switching packets rather than 
preallocating channels, and stop caring about 
wichita eating a soviet nuke.

packets reproduce the per-channel overhead 
N times, while adding framing overhead.

maximum packet length is itself, in part, a 
question of fairness.



RFC 1 §1, AND THE UR-NETWORK

I. A Summary of the IMP Software

Messages

   Information is transmitted from HOST to HOST in bundles called messages.  A message is any stream of 
not more than 8080 bits, together with its header.  The header is 16 bits and contains the following 
information:

           Destination     5 bits

           Link            8 bits

           Trace           1 bit

           Spare           2 bits

   The destination is the numerical code for the HOST to which the message should be sent.  The trace 
bit signals the IMPs to record status information about the message and send the information back to the 
NMC (Network Measurement Center, i.e., UCLA).  The spare bits are unused.



ADDRESSING AND FRAMING ARE SIGNIFICANT OVERHEADS

Ethernet (sans 802.1q): 256 bit-times of 304 (84.2%)

IPv4: 10.5 octets of minimum 20 (52.5%)

IPv6: 34 octets of minimum 40 (85%)

UDP: 4 octets of 8 (50%)

TCP: 4.5 octets of minimum 20 (22.5%)

potentially 81.4% of minimum 672 bit-time Ethernet frame (212% overhead)!

...yet we pay them in the name of flexibility.



PART II
The Ascendency of the Linux Kernel



FORTY YEARS OF MICROSOFT DROPPING THE BALL

1983-01-01: Flag Day. ARPANet moves from NCP to TCP/IP.

1983-08: BSD4.2 released with Berkeley Sockets.

1985: Microsoft implements subset of unroutable NetBIOS for MS-Net

1987-11: RFCs 1034 and 1035 codify modern DNS

1987: Microsoft implements LAN Manager atop SMB1 atop NBF

1993: RFC 1510 specifies Kerberos 5

1993: Microsoft adds NTLMv1 to LAN Manager, releases it on NT3.1 + WfW 3.1

1995: Windows 95 emerges with TCP/IP and Winsock...over a decade late

2023: Windows kernel still closed-source, lol





LINUX: THE INTERNET'S OPERATING SYSTEM

As late as 2000, there was significant variety in deployed operating systems.

In 2023, if you're working on a

datacenter machine, a cloud VM,

a supercomputer, or a network

appliance, you're using Linux.

      (or some freak RTOS)



LINUX NETWORKING EMBIGGENS

● nftables hooks: packet classification, mangling, or even queuing to userspace
● connection-tracking (exposed to userspace)
● rule-based routing
● bridging with vlan integration and brtables hooks
● unified netlink for neighbors, routing, addresses, devices
● pluggable tcp congestion algorithms and queuing disciplines
● network namespaces and cgroup-based resource allocation
● xfrm for pluggable accelerators
● zerocopy, hugepages, scatter-gather, receive flow steering, gro/lro/tso/gso
● tun/tap, tunneling, packet sockets, and good ol' berkeley sockets



THE DIAGRAM



...BUT THE PACKETS COME FASTER AND FASTER

UDPv4 (no VLAN, no IPv4 options) over 10GE:

84B frames: 67ns, 18B payload (21.4%), 14.88Mpps

1538B frames: 1231ns, 1472B payload (95.7%), 812.7Kpps

3110B frames: 2489ns, 3044B payload (97.9%), 401.9Kpps

On a 3GHz core:

Cycles per packet: 201, 3693, and 7467

Cycles per 64-byte cache load: ~52

Cycles per 64-bit word: ~6.5

Cycles per delivered frame byte: 3.14 max (converges to ~0.8)



"ZERO-COST ABSTRACTIONS"

If there exists an nftables hook, but there are no nftables hooked to it, is it a performance 
problem?

● nf hooks are registered as callbacks (nf_register_net_hooks()):
○ load a pointer (hopefully from cache)
○ push frame
○ indirect branch (hopefully correctly predicted, hopefully to code in cache)

● nf hooks are dynamic:
○ execute memory fence (hopefully fast)
○ atomic read (hopefully from cache)
○ branch (hopefully correctly predicted)
○ pop frame
○ return branch

Call it ten cycles in the best case. That's 5% of our budget for minimum-size frames.

The real cost comes in increased pressure on our cache and TLB: a miss anywhere kills us.



MULTICORE: THE SCHEDULER STRIKES BACK

Multisocket ccNUMA machines can only help so much: I/O devices are local to 
some package and its memory; other sockets have reduced bandwidth and 
greater latency to the resources of the zone.

Multicore within the zone is very helpful, subject to some conditions:

● Need scale shared cache and memory with the cores
● Need make certain resources per-core to avoid synchronization
● Need synchronize packet rx/tx if packets mustn't be reordered
● Need fairly distribute load among cores for full utilization



I GET BY WITH A LITTLE HELP FROM DDIO

Hardware does what it can to help us:

● Bigger caches, more memory controllers, more bandwidth to caches and 
RAM, better microarchitecture, more cores, wider units, higher frequencies, 
huge pages, DMA, MSI-X, non-temporal loads, prefetching, more cores.

● DCA: snoop PCIe writes to memory and copy them to LLC
● DDIO: PCIe writes directly to LLC

Yet 10Gbps on commodity hardware remained frustratingly out of reach.



PART III
Polly Packet's Adventures in Socketland



FROM THE ADC TO LAYER 3

● Frame streams into NIC buffer, possibly undergoing hardware LRO/GRO
● NIC checks L2 destination address and FCS, discarding unwanted frames
● NIC runs Receiver Side Scaling classification, selects target queue
● NIC DMAs frame into ringbuffer if there is space (and maybe if there isn't)

○ PCIe -> PCIe root complex -> memory (IOMMU possibly involved)
● NIC sends MSI-X in-band interrupt (which cannot pass DMA)
● LAPIC translates MSI-X to core, raises hardware interrupt

● Hard irqh marks dev, raises NET_RX_SOFTIRQ

● Soft irqh (net_rx_action()) cycles through marked devices calling napi_poll()
● napi_poll() calls XDP program if attached, or RPSes into per-cpu backlog





COMMON RX HARDWARE INTERRUPT HANDLER

static inline void ____napi_schedule(struct softnet_data *sd, struct napi_struct *napi) {

list_add_tail(&napi->poll_list, &sd->poll_list);

__raise_softirq_irqoff(NET_RX_SOFTIRQ);

}

void __napi_schedule(struct napi_struct *n) {

unsigned long flags;

local_irq_save(flags);

____napi_schedule(&__get_cpu_var(softnet_data), n);

local_irq_restore(flags);

}



RX SOFTWARE INTERRUPT HANDLER (ABRIDGED)

static __latent_entropy  void net_rx_action (struct softirq_action  *h) {

for (;;) { // cycle through all devices on poll/repoll lists

struct napi_struct  *n = list_first_entry (&list, struct  napi_struct , poll_list );

skb_defer_free_flush (sd);

if (list_empty (&list)) {

if (!sd_has_rps_ipi_waiting (sd) && list_empty (&repoll)) goto end;

break;

}

budget -= napi_poll (n, &repoll);

if (unlikely (budget <= 0 ||  time_after_eq (jiffies, time_limit))) {

sd->time_squeeze ++; break;

}

}

}

https://elixir.bootlin.com/linux/latest/C/ident/__latent_entropy
https://elixir.bootlin.com/linux/latest/C/ident/net_rx_action
https://elixir.bootlin.com/linux/latest/C/ident/softirq_action
https://elixir.bootlin.com/linux/latest/C/ident/napi_struct
https://elixir.bootlin.com/linux/latest/C/ident/list_first_entry
https://elixir.bootlin.com/linux/latest/C/ident/napi_struct
https://elixir.bootlin.com/linux/latest/C/ident/poll_list
https://elixir.bootlin.com/linux/latest/C/ident/skb_defer_free_flush
https://elixir.bootlin.com/linux/latest/C/ident/sd
https://elixir.bootlin.com/linux/latest/C/ident/list_empty
https://elixir.bootlin.com/linux/latest/C/ident/sd_has_rps_ipi_waiting
https://elixir.bootlin.com/linux/latest/C/ident/sd
https://elixir.bootlin.com/linux/latest/C/ident/list_empty
https://elixir.bootlin.com/linux/latest/C/ident/break
https://elixir.bootlin.com/linux/latest/C/ident/budget
https://elixir.bootlin.com/linux/latest/C/ident/napi_poll
https://elixir.bootlin.com/linux/latest/C/ident/unlikely
https://elixir.bootlin.com/linux/latest/C/ident/budget
https://elixir.bootlin.com/linux/latest/C/ident/time_after_eq
https://elixir.bootlin.com/linux/latest/C/ident/jiffies
https://elixir.bootlin.com/linux/latest/C/ident/sd
https://elixir.bootlin.com/linux/latest/C/ident/time_squeeze
https://elixir.bootlin.com/linux/latest/C/ident/break


LIFE AS A SKBUFF

skbuff: the fundamental packet wrapper of the kernel. From now on, we work 
with skbuffs, not raw packets. We're still operating in softirq context!

● skb is dequeued from per-cpu list, skb data area from per-cpu arena
● data is copied from DMA ringbuffer into (refcounted) skb data
● vlan, timestamp, pkt_type, protocol, csum skb fields set (eth_type_trans())
● netif_receive_skb() called by process_backlog() or driver NAPI poll()
● invoke generic XDP programs, detag VLAN and dispatch to viface
● check for attached AF_PACKET taps and clone skb to each (if room)
● ingress qdisc (default stateless fifo), might drop
● if device is in a bridge, put skb on bridge interface's backlog, otherwise
● deliver to L3 protocol handler via deliver_skb()



BRIDGING, BROUTING, ROUTING

● nftables provide prerouting, input, forward, output, postrouting hooks for inet 
and bridges (for bridges, read "routing" as "forwarding"), NAT on L2, L3, L4

● nftables furthermore provides ingress and egress hooks on devices
● bridge has a forwarding database, mcast group database, vlan/vni filters
● if destination MAC is local, bridge delivers to device L3 protocol handler
● ip_rcv() / ipv6_rcv() check validity and set up L3 skb elements
● ip_rcv_finish() is called via netfilter PREROUTING hook:

○ return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, dev, NULL, ip_rcv_finish);

● ip_rcv_finish() checks for cached route decision, or performs one:
● ip_route_input_slow() -> fib_lookup() -> fib_table_lookup()
● dispatch to one of ip_local_deliver(), ip_forward(), multicast/tunnel input



FROM THE ROUTING DECISION TO USERSPACE

● ip_local_deliver() reassembles fragments and then...INPUT netfilter hook
○ return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN, skb, skb->dev, NULL, ip_local_deliver_finish);

● ip_local_deliver_finish() delivers to raw sockets, or
● ip_local_deliver_finish() checks for an xfrm policy, or
● ip_local_deliver_finish() invokes L4 callback, or
● ip_local_deliver_finish() invokes icmp_send() with Dest Unreach (Proto)
● L4 callbacks: tcp_v4_rcv(), udp_rcv()
● tcp_v4_rcv() implements TCP stream reassembly, kicks ARQ machine
● udp_rcv() validates checksum, if used
● find socket, call sock_queue_rcv(), set waiting thread(s) runnable
● continue running softirq handler until done or descheduled



PART IV
Core, Interrupted:

The Cruel Overhead of a Frame



THE COST OF A PACKET

"Interrupt overhead" is a misnomer: Interrupts are fast. What's slow is context 
switching (low microseconds), rebuilding the TLB, and refilling evicted cache.

Equally slow is the copying of the frame from its device-accessible memory to 
more general memory as an "skbuff". The Linux networking stack works almost 
entirely on skbuffs, with substantial overhead. "Zero-copy" generally means 
avoiding a copy between kernel- and userspace, not this copy. Allocation of 
skbuffs is fast: a per-cpu stack.

Packet output, either to a local socket or a device, generally involves another 
copy, a system call, and a context switch.



THEORETICALLY AVOIDABLE SOURCES OF DELAY/OVERHEAD

● Latency due to DMA into non-local memory
● Scheduler overhead
● Latency waiting for the soft irqh to be scheduled
● Delays warming cache/TLBs for soft irqh
● Read of packet data into cache (eliminated by DCA/DDIO)
● Write of packet data into skbuff data area
● Cloning into taps
● Waiting for RPS-dispatched soft irqhs to be scheduled
● Delays warming cache/TLBs for stack traversals
● Stack traversals, including nftables and queuing disciplines
● Latency due to any non-local reads/writes
● Locking/lookup in socket maps
● Scheduler overhead (reprise)
● Latency waiting for userspace be scheduled
● System call overhead
● Delays warming cache/TLBs for userspace
● Copy of data to userspace



ELIMINATING DELAYS VIA SYSTEM ADMINISTRATION

● Latency due to DMA into non-local memory
● Scheduler overhead + context switch
● Latency waiting for the soft irqh to be scheduled
● Delays warming cache/TLBs for soft irqh
● Read of packet data into cache
● Write of packet data into skbuff data area
● Cloning into taps
● Waiting for RPS-dispatched soft irqhs to be scheduled
● Delays warming cache/TLBs for stack traversals
● Stack traversals, including nftables and queuing disciplines
● Latency due to any non-local reads/writes
● Locking/lookup in socket maps
● Scheduler overhead + context switch (reprise)
● Latency waiting for userspace be scheduled
● System call overhead
● Delays warming cache/TLBs for userspace
● Copy of data to userspace



LOCALITY AND AFFINITY

● Avoid non-local DMA by directing all queues to cores on local package
● Avoid non-local accesses by restricting userspace to the local package AND
● Only allocating for these userspace threads from the local memory

If we can guarantee these three things, we'll never perform a suboptimal access. 

The costs are complexity, reduced total cycles, reduced total memory, and reduced total 
memory bandwidth.

The savings are cycles and bandwidth per unit of load.

Packet arrival time vs (increasing) non-local access time mean adding computational 
power can reduce IPC more quickly than we can add cycles.

ESPECIALLY when one considers that DCA/DDIO only work with the local memory.



ISOLATION AND POPULATION MANAGEMENT

● Keep remaining userspace, soft irqhs off our cores via isolation or cpusets
● Keep unrelated hard irqhs off our cores via irq affinity
● Keep memory traffic off our memory by cpusets + migration

If we can guarantee these three things, we'll never be blocked by unrelated processes, 
and we'll have full use of our local memory (and its bandwidth).

● Launch only as many threads as we have physical cores on the package
● Place them in an "isolated" cgroup to eliminate scheduler domain

This minimizes useless context switching, and keeps the scheduler out of our face. Of 
course, other applications can no longer make use of our cores, or our memory, even 
when they're going unused. They're also far away from a shared network card.



TRADING AWAY FLEXIBILITY FOR PERFORMANCE

Originally, our system dynamically responded to changing loads, keeping active threads 
apart so that they might make full use of the machine, migrating load freely from where it 
is high to where it is low. Applications were treated fairly.

We have designated some application as important, breaking that symmetry. The system 
has minimized overhead due to context switches, cache eviction, and non-local memory 
access for that application. Other applications are disadvantaged, even when our 
application is lightly loaded. Minimal changes to the application were required.

We have begun to claw back the ideal network, but we are nowhere near done.



ELIMINATING TLB MISSES WITH HUGE PAGES

4KiB pages cover 64 cache reads, but only two 1500B packets.

327,680 such pages in 10Gib. A typical TLB has between 1Ki and 4Ki entries.

Every memory access we make must go through the TLB for virtual-to-physical 
translation. A miss means a page table walk with numerous memory accesses.

So long as we're willing to preallocate and lock the memory (making it unavailable 
to other processes, forcing contiguous physical allocations, suffering initial delay 
for page table population, and rendering the memory unswappable), we can make 
use of huge pages. 2MiB pages cover 2⁹ 4KiB pages. 1GiB pages cover 2¹⁸! 



PART V
HFT, DPDK, XDP



FURTHER IMPROVEMENTS REQUIRE STACK UNIFICATION

If we want to get much further, it becomes clear that we must eliminate the switch from 
kernel- to userspace, and eliminate traversal of the kernel's networking stack.

We can do this in two ways: run (almost) everything in kernelspace, or run (almost) 
everything in userspace.

Complex code is a poor fit for kernelspace, where faults can easily bring down the entire 
machine (possibly permanently!), standard libraries are unavailable, debugging is 
difficult, iteration time is high, and one must consider numerous execution contexts and 
memory access types.

Userspace is the place. Of course, the kernel's primary role is arbitrating userspace 
access to hardware. Other applications lose access entirely! We furthermore lose kernel 
functionality: routing, taps, bridging, tunneling, security, traffic shaping...



ELIMINATING DELAYS VIA STACK BYPASS IN TOTO

● Latency due to DMA into non-local memory
● Scheduler overhead + context switch
● Latency waiting for the soft irqh to be scheduled
● Delays warming cache/TLBs for soft irqh
● Read of packet data into cache
● Write of packet data into skbuff data area
● Cloning into taps
● Waiting for RPS-dispatched soft irqhs to be scheduled
● Delays warming cache/TLBs for stack traversals
● Stack traversals, including nftables and queuing disciplines
● Latency due to any non-local reads/writes
● Locking/lookup in socket maps
● Scheduler overhead + context switch (reprise)
● Latency waiting for userspace be scheduled
● System call overhead
● Delays warming cache/TLBs for userspace
● Copy of data to userspace

Now we're cooking with thermonuclear fire! This is the approach of DPDK.



DPDK: VAN JACOBSON CHANNELS TAKEN TO THE EXTREME

HFT and HPC programmers had been doing ad hoc userspace networking stacks 
for two decades.

FIXME FIXME FIXME describe accursed DPDK in detail



MAYBE A LITTLE TOO EXTREME TBH

DPDK is a PITA:

● We oftentimes want to keep a lot of that kernel functionality.
● We oftentimes want other applications to be able to use the card.
● We can already minimize the frontend (everything through soft irqh) using the 

affinity and isolation technique described earlier; NAPI and polling further 
reduce the per-packet impact.



ELIMINATING DELAYS VIA STACK BYPASS IN PARALLEL

● Latency due to DMA into non-local memory
● Scheduler overhead + context switch
● Latency waiting for the soft irqh to be scheduled
● Delays warming cache/TLBs for soft irqh
● Read of packet data into cache
● Write of packet data into skbuff data area
● Cloning into taps
● Waiting for RPS-dispatched soft irqhs to be scheduled
● Delays warming cache/TLBs for stack traversals
● Stack traversals, including nftables and queuing disciplines
● Latency due to any non-local reads/writes
● Locking/lookup in socket maps
● Scheduler overhead + context switch (reprise)
● Latency waiting for userspace be scheduled
● System call overhead
● Delays warming cache/TLBs for userspace
● Copy of data to userspace

This can be accomplished with packet sockets, which can support zero-copy. Interesting, but messy, and not so fast.



BROKE: EXTREME                                                          WOKE: eXpress

Some further observations regarding DPDK:

● The TX path is much simpler and faster than RX.
○ What if we just accelerated the RX path, and called it a day?

● We don't want our application to have to deal with unrelated packets.
● Some apps are small and simple enough to easily run in the kernel.
● The copy from RX ringbuffer to skbuff dominates the total RX path delay.

If we could just elide this copy (together with our other optimizations), and bypass 
the stack selectively, we'd win back the majority of our performance. We'd only 
lose kernel functionality for the selected traffic, and lose it only on the RX path.



ELIMINATING DELAYS VIA STACK BYPASS IN PARTES

● Latency due to DMA into non-local memory
● Scheduler overhead + context switch
● Latency waiting for the soft irqh to be scheduled
● Delays warming cache/TLBs for soft irqh
● Read of packet data into cache
● Write of packet data into skbuff data area
● Cloning into taps
● Waiting for RPS-dispatched soft irqhs to be scheduled
● Delays warming cache/TLBs for stack traversals
● Stack traversals, including nftables and queuing disciplines
● Latency due to any non-local reads/writes
● Locking/lookup in socket maps
● Scheduler overhead + context switch (reprise)
● Latency waiting for userspace be scheduled
● System call overhead
● Delays warming cache/TLBs for userspace
● Copy of data to userspace

               This, combined with eBPF programs run from the soft irqh, is the Linux kernel's AF_XDP socket family.



THE MECHANICS OF XDP

FIXME FIXME FIXME talk about rings and such



XDP vs DPDK: THE STRUGGLE CONTINUES

We initially looked at the tradeoff between functionality and performance.

Here we see that tension once more, in miniature. Both of these methods can be far, far more performant 
than Berkeley sockets. Both greatly complicate deployment and require per-device support. DPDK 
appears, on the surface, to have a small advantage. It is more established, and can easily hit its peak.

Any FAANG-approved engineer (or ChatGPT) can chomp some adderall, write a DPDK program, expense 
an extra NIC, and shuffle packets around at high rates. If you have the source to your vendor's application, 
you can maybe coax it into integrating with your larger network. Good luck composing it with other code.

XDP is the hackers' response, driven by the community with less commercial fanfare. It coexists with and 
leverages the rich complexity master programmers have learned to tame, bypassing only what it needs.

An elegant weapon, for a more civilized age.



I'm far too l33t for DPDK, and I hope you are, too.


