
How to Miscompile Programs
with “Benign” Data Races

Hans-J. Boehm, HotPar 2011

nick black <dank@qemfd.net>

Atlanta PWL #09, 2018-10-09

executive summary

“Benign” data races do not exist at the source level.

Effects of data races depend on compilation flags, compiler
version, hardware, and OS.

Attempts to assign useful semantics to data races (Java, .NET)
prohibit classes of compiler optimizations.

Compilers can make any transformation that preserve observational
expectations within a thread. Across threads, all bets are off
without synchronization.

historical context and results

Multithread-aware memory model (declaring all data races to be
errors having undefined behavior) only added to C11, C++11.

Portable, performant atomics added by C11 <stdatomic.h>,
C++11 <atomic>.

Complex compiler/CPU technology stresses naive mental models.

Race detection tool research at the time hoped to distinguish
“destructive” from “benign” races (this paper is, in part, a
response to that trend).

Data races are difficult to detect in mainstream PRAM-model
languages, Recognizing their seriousness motivated programming
language research, better software engineering practices, and work
on tools.

data races, how do they work

“We define a data race as simultaneous access to the same
memory location by multiple threads, where at least one of the
accesses modifies the memory location.”

Essentially equivalent to e.g. Java’s “happens-before” definitions.

source: let’s speed up lazy init

i f (! i n i t f l a g) {
l o c k () ;
i f (! i n i t f l a g) {

my data = . . . ;
i n i t f l a g = t r u e ;

}
u n l o c k () ;

}
tmp = my data ;

doubly-checked lazy initialization disasters

Bad idea: Bypass “expensive” lock acquisition in common
(initialized) case.

Problem 1: Compiler reorders writes to my data, init flag.
Thread sees a high init flag, but my data is not actually prepared,
tmp gets bogus value.

Problem 2: Processor reorders stores to my data, init flag.
Without lock, there’s no memory barrier ensuring ordering
visibility, same result as above.

Proper solutions: pthread once(), C++11/C11 call once(),
C++11 static block scope (can be optimal), lift initialization out
of concurrent path (probably optimal)

why would this happen?

Store motion eliminates redundant assignments by lifting them out
of subblocks. Instruction scheduling optimizes for instruction
cache loads, frontend decoding, and OOO resources, and can move
independent code arbitrarily. Dependency optimization might
perform a write earlier, to have it ready by the time of its use.

Processor store reordering is performed to eliminate redundant
stores, make better utilization of buses/caches, better balance
bank accesses, and reduce interprocessor traffic.

source: let’s turn a light off and on

t1 () {
w h i l e (1) {

s l e e p (1) ;
s e t l i g h t (b r i g h t n e s s) ;

}
}

t2 () {
t = 0 ; b r i g h t n e s s = 0 ;
w a i t u n t i l (e v e n t) {

b r i g h t n e s s = (t++ % 2) ? 0 : 4 ;
}

}

both values are valid, until they’re not

Bad idea: Avoid lock complexity between publisher and polling
consumer signalling via a bimodal shared integer.

Problem 1: Compiler optimizes away check entirely, as there’s no
way for the variable to be modified in consumer control flow. Code
never runs.

Problem 2: Architecture doesn’t support integer width, compiler
makes up for it in multipart software load. Alternatively, compiler
materializes constant on the fly in multistep operation. Thread
sees value outside the two expected values.

Proper solution: atomics, or good ol’ locks for complex data
(not volatile!)

source: let’s write an arbitrary value

i n t my counter = c o u n t e r ; // Read g l o b a l
i n t (∗my func) (i n t) ;
i f (my counter > m y o l d c o u n t e r) {

. . . // Consume data
my func = . . . ;
. . . // Do some more consumer work

}
. . . // Do some o t h e r work
i f (my counter > m y o l d c o u n t e r) {

. . . my func (. . .) . . .
}

reality is a lie

Bad idea: Avoid lock complexity between publisher and polling
consumer signalling via a shared integer where all values are
acceptable.

Problem: Compiler never actually generates temporary variable,
reloading from the shared variable, which changes between
conditionals. Thread “impossibly” branches into the grim lands of
undefined behavior, is eaten by a grue.

source: let’s count negatives

s t a t i c i n t count = 1 7 ;

f (x) {
f o r (p = x ; p ; p = p−>n e x t) {

i f (p−>data < 0) {
count++;

}
}

}

t1 () { count = 0 ; f (p o s i t i v e s) ; }

t2 () { f (p o s i t i v e s) ; count = 0 ; }

adding writes results in fewer writes

Bad idea: Avoid lock complexity by only writing a single constant
(with only positive inputs, only 0 ought ever be written to count).

Problem: Compiler uses register for accumulation, writes back
modified result.

jiro dreams of zero

t h r e a d 2 r e g = count ; // Reads 17
count = 0 ; // t h r e a d 1
count = t h r e a d 2 r e g ; // W r i t e s 17
t h r e a d 1 r e g = count ; // Reads 17
count = 0 ; // t h r e a d 2
count = t h r e a d 1 r e g ; // W r i t e s 17 , a i e e e e e

come on mary, don’t fear the mutex

Acquisition of an uncontended Linux mutex since 2.6.0 (2003) is
merely an atomic lock instruction on a memory location. No
system call, no bus locking. no fuss.

Locking is cheap. Contention is expensive.

Worried about performance? perf-lock, you’re welcome.
Off-CPU analysis can currently best be effected via perf+eBPF
cantrips.

does this apply to me, a non-dinosaur?

Any PRAM-model concurrency implementation allowing sharing of
mutable data is susceptible to data races, and most further
susceptible to unexpected results due to compiler/interpreter
optimization.

• Go

• Rust (unsafe dialect)

• Java

• Python

• Javascript...

tools and techniques for avoiding data races

• Languages supporting non-PRAM models (CSP, immutable
MP, etc.)

• Scope-based RAII synchronization (C++ std::lock guard)

• Raw checkers (clang’s scan-build, Java’s RacerD)

• Annotations (clang’s TSA, javax.annotation.concurrent)

• Dynamic analysis tools aplenty:

Go 1.1’s -race

TSan (clang 3.4+),
ThreadSanitizer (gcc 4.8.1+)
Valgrind’s helgrind

