LRUMAP
O(1) Massively-Scalable LRU

Nick Black

Georgia Institute of Technology
nickblack@linux.com

Abstract

Traditional O(n) or even O(lgn) LRU implementations are
too slow for backbone routers and IPS devices. We intro-
duce LRUSET, a novel O(1) true LRU scheme which be-
comes more space-efficient as the number of monitored sets
increases.

Categories and Subject Descriptors 1.5.3 [Clustering]:
Algorithms

General Terms LRUMAP, networking algorithmics

Keywords 1LRUMAP, LRU, Pseudo-LRU, MROM, Pre-
computed Permutation Table (PPT)

1. Conventions

We will speak of n independent sets. It is assumed that
all possible input values are somehow partitioned among
these sets. For a set of TCP/UDP endpoint pairs, a set might
be associated with each observed IP address pair (perhaps
themselves backed by a one- or two-leveled LRU). For an
associative cache, some subset of the address bits are used
to index into a fixed number of sets. In an order-r LRU, each
set contains r members. When r = 1, the system is said to be
direct-mapped: replacement always occurs, and the number
of sets n is equivalent to the system capacity. When r equals
the capacity of the system, there can likewise be at most one
set; such a system is said to be fully associative. Since lgr
is a frequent term in LRU’s complexity analysis, a system’s
order is almost always a power of

IThough wasteful of space, other orders have been infrequently used to
improve latency [3].

Copyright is held by the author.
CS7260 May 5, Atlanta.

2. LRUMAP Data Structures

At LRUMAP’s core lies a transition table shared among all
sets, its size dependent upon r. This transition table is initial-
ized at startup, and can be placed into constant memory once
assembled (alternatively, it can be cast into cheap hardware
using extremely reliable Masked-Or ROM (MROM) tech-
nology [4]]). By transition table, we mean a family X of | P|
well-defined functions

o1(l),...,0p(1) — P

where p € Pand 1 <[< r. P is the set of all permutations
of r integers, and has r! members. We call this the Precom-
puted Permutation Table (PPT). As it requires [lg r!] bits to
encode p, the total size of this table is r!r[lg r!] bits.

True LRU assigns to each member in each set an index [,
0 <1 < r — 1. Each set thus requires lg r bits to represent
the relative ages of its » members. The central insight behind
LRUMAP is that these members have been placed on a
bijection against 0...r — 1; this is the classic definition of
a permutation mapping. Each set’s metastate can thus be
considered completely described by a permutation of 7, and
lgr! bits are obviously sufficient to identify a set’s LRU
state. Just as in classic LRU, metastate has a variable cost
linearly dependent on n, but each set as a whole maps into
the precomputed permutation table using [lgr!] bits. It is
simple to prove that the latter is strictly less than the former
by properties of logarithms:

lgab =1ga+1gb
lgrl=1g(1%2%---xr—1x%r)

lgr! = ilgi
ijl)
= Zlgi < Zlgr
i=1 i=1

3. LRUMAP Algorithms

There are two fundamental operations defined by an LRU
system, which might be performed in a fused manner:

e lookup (set,val)— r. Takes a value and searches
the set’s content for it, usually in parallel. If the value is

not present, the least-recently used (most stale) member
will be replaced with this value. Returns the slot in which
the value can now be found.

e update (set, r) —set. Takes a set and position, and
updates the set’s metastate based off a most recent refer-
ence to that position.

lookup () ’s functionality is unchanged by LRUMAP. The
amount of content memory used remains the same, as does
the space of search algorithms (and the associated perfor-
mance space). Typically, r is traded off against search la-
tency and cost; a single-cycle search of more than a single
SIMD unit is extremely expensive. As a result, r values for
classic LRU are typically small, well within the range re-
quired by LRUMAP.

update () is the central interface to LRUMAP, and
uniquely served. Rather than operating upon and updating a
self-sufficient metastate description within the set, the single
[lg !]-bit set value is used to index into the shared PPT. This
uniquely identifies a function ¢4, (l), to which the result
from lookup () is provided. Functions from X are closed
on P: this new result identifies a new permutation. Evalua-
tion of ¢4, (1) consists entirely of a small, constant number
of arithmetic operations followed by a memory lookup, thus
executing in O(1) time.

4. Comparison to Classic LRU

The essential time and space complexities of classic LRU
and LRUMAP are captured in Table [I] allowing for p up-
dates performed in parallel. p can be made as large as r for
those low values of r with which LRUMAP is applicable,
but likely only at substantial unit cost. This is all the more
true if multiple LRU sets are themselves to be searched and
updated in parallel.

LRU LRUMAP
Time [OUZN.p<7 | O0)
O(rlr[lgr!]) + O(n[lgr!])

Table 1. Essential properties of LRU/LRUMAP

Space | O(nrlgr)

As expected, we see in Figure [I] that LRUMAP saves
significant space over LRU for large values of n and small
values of r. At eighth order, LRUMAP takes over from LRU
atn = 111217.

LRUMAP is even more effective at fourth order, requir-
ing less space than LRU for all but trivially small n (see

Figure [2).

5. Beyond LRUMAP
5.1 Optimizations

LRUMAP as stated assigns no meaning to the relative loca-
tions of the permutation functions within X; the only require-
ment is that they occupy contiguous memory. This ensures

LRUMAP vs Classic True LRU, Order 8

2.5e+07 T
LRUMAP +
Classic LRU
2e+07 =
® 1.5e+07
1)
=1
0
]
& le+07
5e+06
ok I I I
0 300000 600000 900000
LRU sets
Figure 1. Eighth-order LRU
LRUMAP vs Classic True LRU, Order 4
8e+07 T
LRUMAP +

7e+07 [Classic LRU 4

6e+07 -
© 5e+07 | B
(9] L
) L
3
n 4e+07 -
]
>
o 3e+07

2e+07

le+07

0 el il | | 1
0 3e+06 6e+06 9e+06

LRU sets

Figure 2. Fourth-order LRU

that the update () function can be evaluated in constant
time. By carefully placing the functions within the PPT, we
can cut its size. For instance, every o € ¥ will map some in-
put to itself; this corresponds to the case of the most recently
used item being referenced. For each valid [, this will be true
for exactly ”711“ elements. Thus, by sorting the permutations
by the [which they map to themselves, we can remove these
elements—% of the entries! This saves 25% and 12.5% of the
space used by LRUMAP for r = 4 and r = 8§, respectively.

5.2 Approximation

It may not be necessary to perform true, precise LRU. An en-
tire family of schemes have been presented, approximating
LRU in less time and/or space. VIA C3® and Intel processors
of the Pentium® era [6] made use of pseudo-LRU, a direction
vector-based scheme which requires only O(lgr) bits per
set [2]]. The PA-RISC 8600 [3]] likewise used a proprietary
quasi-LRU algorithm, with a similar reduction in bits per
set. These schemes can be straightforwardly combined with
LRUMAP to yield a new variant, wherein the LRUMAP en-
tries represent and map among these algorithms’ direction
vectors rather than an order’s permutations. There seems no
advantage in doing so, however; Pseudo-LRUMAP will con-

sume strictly more space than Pseudo-LRU, and is unlikely
to provide a speed advantage.

A direction vector is lgr bits, and the set of direction
vectors is thus composed of 2!8” = 7 members. Just as
before, we precompute a constant table, this time containing
rlgr-bit transitions for each of r entries. Each of n sets
will require a lg r-bit encoding of its current pseudo-LRU
state. A single operation still suffices to update the metastate.
Again allowing for p updates in parallel, we derive Table [2|

Pseudo-LRU Pseudo-LRUMAP
Time | O(Z5),p<Igr | O(1)
Space | O(nlgr) O(r*lgr) + O(nlgr)

Table 2. Essential properties of Pseudo-LRU/LRUMAP

In this case, however, the updates being performed in-
volve lgr single bits. We’ve assumed r to be less than or
equal to 8; even an 8-bit embedded processor could thus
perform the updates in parallel. Pseudo-LRUMAP cannot be
expected to provide any improvement over Pseudo-LRU.

5.3 Extensions

It is trivial to adapt LRUMAP to the Most-Recently-Used
methodology, employed by page caches when a “looping
sequential” [1] access pattern is detected.

References

[1] D. J. Dewitt and H.-T. Chou. An evaluation of buffer manage-
ment strategies for relational database systems. International
Conference on Very Large Databases, August 1985.

[2] J. Handy. The Cache Memory Book. The Morgan Kaufmann
Series in Computer Architecture and Design. Morgan Kauf-
mann, second edition, January 1998.

[3] K. A. Hurd. A 600 MHz 64b PA-RISC microprocessor. /[EEE
Solid-state Circuits Conference, February 2000.

[4] Integrated Circuit Engineering Corporation. Memory 1997:
Complete Coverage of DRAM, SRAM, EPROM, and Flash
Memory ICs. Smithsonian Integrated Circuit Engineering Col-
lection. 1997.

[5] Intel Corporation. Intel® Processor Identification and the
CPUID Instruction. Application Note 485. August 2009.

[6] T. Shanley. 80486 System Architecture. PC System Architec-
ture Series. Addison Wesley Longman, April 1995.

	Conventions
	LRUMAP Data Structures
	LRUMAP Algorithms
	Comparison to Classic LRU
	Beyond LRUMAP
	Optimizations
	Approximation
	Extensions

