Difference between revisions of "CUDA"

From dankwiki
("65K" ?!)
 
(9 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
nvidia 0000:07:00.0: setting latency timer to 64
 
nvidia 0000:07:00.0: setting latency timer to 64
 
NVRM: loading NVIDIA UNIX x86_64 Kernel Module  190.53  Wed Dec  9 15:29:46 PST 2009</pre>
 
NVRM: loading NVIDIA UNIX x86_64 Kernel Module  190.53  Wed Dec  9 15:29:46 PST 2009</pre>
Once the module is loaded, CUDA should be able to find the device. See [[CUDA#deviceQuery_Output|below]] for sample outputs. Each device has a '''compute capability''', though this does not encompass all differentiated capabilities (see also <tt>deviceOverlap</tt> and <tt>canMapHostMemory</tt>...). Note that "emulation mode" has been removed as of CUDA Toolkit Version 3.1.
+
Once the module is loaded, CUDA should be able to find the device. See [[CUDA#deviceQuery_Output|below]] for sample outputs. Each device has a [[CUDA#Compute_Capabilities|compute capability]], though this does not encompass all differentiated capabilities (see also <tt>deviceOverlap</tt> and <tt>canMapHostMemory</tt>...). Note that "emulation mode" has been removed as of CUDA Toolkit Version 3.1.
  
 
==CUDA model==
 
==CUDA model==
Line 32: Line 32:
 
===Streaming Multiprocessor===
 
===Streaming Multiprocessor===
 
* Each SM has a register file, fast local (''shared'') memory, a cache for constant memory, an instruction cache (ROP), a multithreaded instruction dispatcher, and some number of [[#Stream Processor|Stream Processors]] (SPs).
 
* Each SM has a register file, fast local (''shared'') memory, a cache for constant memory, an instruction cache (ROP), a multithreaded instruction dispatcher, and some number of [[#Stream Processor|Stream Processors]] (SPs).
** 8192 registers for compute capability <= 1.1, otherwise
+
** 8K registers for compute capability <= 1.1, otherwise
** 16384 for compute capability <= 1.3, otherwise
+
** 16K for compute capability <= 1.3, otherwise
** 32768 for compute capability <= 2.1, otherwise
+
** 32K for compute capability <= 2.1, otherwise
** 65k through at least compute capability 3.5
+
** 64K through at least compute capability 3.5
 
* A group of threads which share a memory and can "synchronize their execution to coördinate accesses to memory" (use a [[barrier]]) form a '''block'''. Each thread has a ''threadId'' within its (three-dimensional) block.
 
* A group of threads which share a memory and can "synchronize their execution to coördinate accesses to memory" (use a [[barrier]]) form a '''block'''. Each thread has a ''threadId'' within its (three-dimensional) block.
 
** For a block of dimensions &lt;D<sub>x</sub>, D<sub>y</sub>, D<sub>z</sub>&gt;, the threadId of the thread having index &lt;x, y, z&gt; is (x + y * D<sub>x</sub> + z * D<sub>y</sub> * D<sub>x</sub>).
 
** For a block of dimensions &lt;D<sub>x</sub>, D<sub>y</sub>, D<sub>z</sub>&gt;, the threadId of the thread having index &lt;x, y, z&gt; is (x + y * D<sub>x</sub> + z * D<sub>y</sub> * D<sub>x</sub>).
Line 165: Line 165:
  
 
===Compute Capabilities===
 
===Compute Capabilities===
The original public CUDA revision was 1.0, implemented on the NV50 chipset corresponding to the GeForce 8 series. Compute capability, formed of a non-negative major and minor revision number, can be queried on CUDA-capable cards. All revisions thus far have been backwards-compatible.
+
The original public CUDA revision was 1.0, implemented on the NV50 chipset corresponding to the GeForce 8 series. Compute capability, formed of a non-negative major and minor revision number, can be queried on CUDA-capable cards. All revisions thus far have been fowards-compatible, though recent CUDA toolkits will not generate code for CC1 or 2.
 +
 
 
{| border="1" class="wikitable"
 
{| border="1" class="wikitable"
 
! Resource
 
! Resource
Line 176: Line 177:
 
! 3.0 SMX
 
! 3.0 SMX
 
! 3.5 SMX
 
! 3.5 SMX
 +
! 7.0 SM
 +
! 7.5 SM
 
|-
 
|-
 
|CUDA cores
 
|CUDA cores
Line 186: Line 189:
 
|192
 
|192
 
|192
 
|192
 +
|64/32<br/>64/8
 +
|64/2<br/>64/8
 
|-
 
|-
|Warp schedulers
+
|Schedulers
 
|1
 
|1
 
|1
 
|1
Line 194: Line 199:
 
|2
 
|2
 
|2
 
|2
 +
|4
 +
|4
 
|4
 
|4
 
|4
 
|4
Line 206: Line 213:
 
|2
 
|2
 
|2
 
|2
 +
|1
 +
|1
 
|-
 
|-
 
|Threads
 
|Threads
 
|768
 
|768
 
|768
 
|768
|1024
+
|1K
|1024
+
|1K
 
|1536
 
|1536
 
|1536
 
|1536
|2048
+
|2K
|2048
+
|2K
 +
|2K
 +
|1K
 
|-
 
|-
 
|Warps
 
|Warps
Line 226: Line 237:
 
|64
 
|64
 
|64
 
|64
 +
|64
 +
|32
 
|-
 
|-
 
|Blocks
 
|Blocks
Line 235: Line 248:
 
|8
 
|8
 
|16
 
|16
 +
|16
 +
|32
 
|16
 
|16
 
|-
 
|-
|32-bit registers
+
|32-bit regs
|8192
+
|8K
|8192
+
|8K
|16384
+
|16K
|16384
+
|16K
|32768
+
|32K
|32768
+
|32K
|65536
+
|64K
|65536
+
|64K
 +
|64K
 +
|64K
 
|-
 
|-
|Example chips
+
|Examples
|
+
|G80
|
+
|G9x
|
+
|GT21x
|  
+
|GT200
| GF100
+
|GF110
| GF104/GF106/GF108
+
|GF10x
| GK104
+
|GK104
| GK110
+
|GK110
 +
|GV100
 +
|TU10x
 
|-
 
|-
}
+
|}
 
{| border="1"
 
{| border="1"
 
! Revision
 
! Revision
Line 332: Line 351:
 
** Indirect texture/surface support
 
** Indirect texture/surface support
 
** Extends generic addressing to include the const state space
 
** Extends generic addressing to include the const state space
 +
 +
|-
 +
| 7.0
 +
|
 +
* ''PTX 6.3''
 +
* Tensor cores
 +
* Independent thread scheduling
 +
 +
|-
 +
| 7.5
 +
|
 +
* ''PTX 6.4''
 +
* Integer matrix multiplication in tensor cores
 
|-
 
|-
 
|}
 
|}
Line 362: Line 394:
 
* <tt>-X -v</tt> displays per-thread register usage
 
* <tt>-X -v</tt> displays per-thread register usage
 
* <tt>-X -abi=no</tt> disables the PTX ABI, saving registers but taking away your stack
 
* <tt>-X -abi=no</tt> disables the PTX ABI, saving registers but taking away your stack
* <tt>-dlcm={cg,cs,ca} modifies cache behavior for loads
+
* <tt>-dlcm={cg,cs,ca}</tt> modifies cache behavior for loads
* <tt>-dscm={cw,cs} modifies cache behavior for stores
+
* <tt>-dscm={cw,cs}</tt> modifies cache behavior for stores
 
===SDK's common.mk===
 
===SDK's common.mk===
 
This assumes use of the SDK's common.mk, as recommended by the documentation.
 
This assumes use of the SDK's common.mk, as recommended by the documentation.
Line 415: Line 447:
 
* A run time limit is activated by default if the device is being used to drive a display.
 
* A run time limit is activated by default if the device is being used to drive a display.
 
* Please feel free to [mailto:nickblack@acm.org send me output!]
 
* Please feel free to [mailto:nickblack@acm.org send me output!]
 +
 +
 
{| border="1"
 
{| border="1"
 
! Device name
 
! Device name
Line 420: Line 454:
 
! MP's
 
! MP's
 
! Cores
 
! Cores
! Const mem
 
 
! Shmem/block
 
! Shmem/block
 
! Reg/block
 
! Reg/block
Line 431: Line 464:
 
! Shared maps?
 
! Shared maps?
 
|-
 
|-
! COLSPAN="15" style="background:#8070D8;" | Compute capability 3.0
+
! COLSPAN="13" style="background:#eebeb6;" | Compute capability 7.0
 +
|-
 +
| Tesla V100
 +
| 16GB
 +
| 84
 +
| 5376/2688/672
 +
|
 +
|
 +
|
 +
|
 +
|
 +
| 1.53GHz
 +
| Yes
 +
| No
 +
| Yes
 +
|-
 +
! COLSPAN="13" style="background:#8070D8;" | Compute capability 3.0
 
|-
 
|-
 
| GeForce GTX 680
 
| GeForce GTX 680
Line 438: Line 487:
 
| 1536
 
| 1536
 
|  
 
|  
|
 
 
|
 
|
 
|
 
|
Line 448: Line 496:
 
| Yes
 
| Yes
 
|-
 
|-
! COLSPAN="15" style="background:#ffdead;" | Compute capability 2.1
+
! COLSPAN="13" style="background:#ffdead;" | Compute capability 2.1
 
|-
 
|-
 
| GeForce GTX 560 Ti
 
| GeForce GTX 560 Ti
|
 
 
|
 
|
 
|
 
|
Line 466: Line 513:
 
|-
 
|-
 
| GeForce GTX 550 Ti
 
| GeForce GTX 550 Ti
|
 
 
|
 
|
 
|
 
|
Line 484: Line 530:
 
| 7
 
| 7
 
| 224
 
| 224
| 64k
 
 
| 48k
 
| 48k
 
| 32k
 
| 32k
Line 496: Line 541:
 
|-
 
|-
 
| GeForce GTS 450
 
| GeForce GTS 450
|
 
 
|
 
|
 
|
 
|
Line 510: Line 554:
 
|
 
|
 
|-
 
|-
! COLSPAN="15" style="background:#ffdead;" | Compute capability 2.0
+
! COLSPAN="13" style="background:#ffdead;" | Compute capability 2.0
 
|-
 
|-
 
| GeForce GTX 580
 
| GeForce GTX 580
Line 516: Line 560:
 
| 16
 
| 16
 
| 512
 
| 512
|
 
 
|
 
|
 
|
 
|
Line 531: Line 574:
 
| 14
 
| 14
 
| 448
 
| 448
| 64k
 
 
| 48k
 
| 48k
 
| 32k
 
| 32k
Line 546: Line 588:
 
| 14
 
| 14
 
| 448
 
| 448
| 64k
 
 
| 48k
 
| 48k
 
| 32k
 
| 32k
Line 561: Line 602:
 
| 15
 
| 15
 
| 480
 
| 480
|
 
 
|  
 
|  
 
|  
 
|  
Line 576: Line 616:
 
| 14
 
| 14
 
| 448
 
| 448
|
 
 
|  
 
|  
 
|  
 
|  
Line 587: Line 626:
 
|
 
|
 
|-
 
|-
! COLSPAN="15" style="background:#efefef;" | Compute capability 1.3
+
! COLSPAN="13" style="background:#efefef;" | Compute capability 1.3
 
|-
 
|-
 
| Tesla C1060
 
| Tesla C1060
Line 593: Line 632:
 
| 30
 
| 30
 
| 240
 
| 240
| 65536b
 
 
| 16384b
 
| 16384b
 
| 16384
 
| 16384
Line 608: Line 646:
 
| 30
 
| 30
 
| 240
 
| 240
| 65536b
 
 
| 16384b
 
| 16384b
 
| 16384
 
| 16384
Line 623: Line 660:
 
| 30
 
| 30
 
| 240
 
| 240
| 65536b
 
 
| 16384b
 
| 16384b
 
| 16384
 
| 16384
Line 638: Line 674:
 
| 30
 
| 30
 
| 240
 
| 240
| 65536b
 
 
| 16384b
 
| 16384b
 
| 16384
 
| 16384
Line 653: Line 688:
 
| 27
 
| 27
 
| 216
 
| 216
| 65536b
 
 
| 16384b
 
| 16384b
 
| 16384
 
| 16384
Line 664: Line 698:
 
| Yes
 
| Yes
 
|-
 
|-
! COLSPAN="15" style="background:#efefef;" | Compute capability 1.2
+
! COLSPAN="13" style="background:#efefef;" | Compute capability 1.2
 
|-
 
|-
 
| GeForce GT 360M
 
| GeForce GT 360M
Line 670: Line 704:
 
| 12
 
| 12
 
| 96
 
| 96
| 65536b
 
 
| 16384b
 
| 16384b
 
| 16384
 
| 16384
Line 685: Line 718:
 
| 2
 
| 2
 
| 16
 
| 16
| 65536b
 
 
| 16384b
 
| 16384b
 
| 16384
 
| 16384
Line 700: Line 732:
 
| 12
 
| 12
 
| 96
 
| 96
| 65536b
 
 
| 16384b
 
| 16384b
 
| 16384
 
| 16384
Line 711: Line 742:
 
| Yes
 
| Yes
 
|-
 
|-
! COLSPAN="15" style="background:#efefef;" | Compute capability 1.1
+
! COLSPAN="13" style="background:#efefef;" | Compute capability 1.1
 
|-
 
|-
 
| ION
 
| ION
Line 717: Line 748:
 
| 2
 
| 2
 
| 16
 
| 16
| 65536b
 
 
| 16384b
 
| 16384b
 
| 8192
 
| 8192
Line 732: Line 762:
 
| 2
 
| 2
 
| 16
 
| 16
| 65536b
 
 
| 16384b
 
| 16384b
 
| 8192
 
| 8192
Line 747: Line 776:
 
| 16
 
| 16
 
| 128
 
| 128
| 65536b
 
 
| 16384b
 
| 16384b
 
| 8192
 
| 8192
Line 762: Line 790:
 
| 16
 
| 16
 
| 128
 
| 128
| 65536b
 
 
| 16384b
 
| 16384b
 
| 8192
 
| 8192
Line 777: Line 804:
 
| 8
 
| 8
 
| 64
 
| 64
| 65536b
 
 
| 16384b
 
| 16384b
 
| 8192
 
| 8192
Line 793: Line 819:
 
| 2
 
| 2
 
| 16
 
| 16
| 65536b
 
 
| 16384b
 
| 16384b
 
| 8192
 
| 8192
Line 808: Line 833:
 
| 16
 
| 16
 
| 128
 
| 128
| 65536b
 
 
| 16384b
 
| 16384b
 
| 8192
 
| 8192
Line 823: Line 847:
 
| 4
 
| 4
 
| 32
 
| 32
| 65536b
 
 
| 16384b
 
| 16384b
 
| 8192
 
| 8192
Line 838: Line 861:
 
| 1
 
| 1
 
| 8
 
| 8
| 65536b
 
 
| 16384b
 
| 16384b
 
| 8192
 
| 8192

Latest revision as of 20:33, 14 August 2019

A "Fermi" GT200 die

Hardware

NVIDIA maintains a list of supported hardware. You'll need the "nvidia.ko" kernel module. On Debian, use the nvidia-kernel-dkms package to build a module appropriate for your kernel (and automatically rebuild it upon kernel upgrades). You can also download the nvidia-kernel-source and nvidia-kernel-common packages, unpack /usr/src/nvidia-kernel.tar.bz2, and run make-kpkg modules_image. Install the resulting .deb, and modprobe nvidia. You'll see something like this in dmesg output:

nvidia: module license 'NVIDIA' taints kernel.
Disabling lock debugging due to kernel taint
nvidia 0000:07:00.0: enabling device (0000 -> 0003)
nvidia 0000:07:00.0: PCI INT A -> GSI 21 (level, low) -> IRQ 21
nvidia 0000:07:00.0: setting latency timer to 64
NVRM: loading NVIDIA UNIX x86_64 Kernel Module  190.53  Wed Dec  9 15:29:46 PST 2009

Once the module is loaded, CUDA should be able to find the device. See below for sample outputs. Each device has a compute capability, though this does not encompass all differentiated capabilities (see also deviceOverlap and canMapHostMemory...). Note that "emulation mode" has been removed as of CUDA Toolkit Version 3.1.

CUDA model

Host

  • A host contains zero or more CUDA-capable devices (emulation must be used if zero devices are available).
  • It can run multiple CUDA processes, each composed of one or more host threads.
  • A given host thread can execute code on only one device at once.
  • Multiple host threads can execute code on the same device.

Device

  • A device packages a streaming processor array (SPA), a memory interface, and possibly memory (global memory. device memory).
    • In CUDA terminology, an integrated (vs discrete) device does not have its own global memory.
    • Specially-prepared global memory is designated constant memory, and can be cached.
  • Pinned (locked) host memory avoids a bounce buffer, accelerating transfers.
    • Larger one-time setup cost due to device register programming for DMA transfers.
    • This memory will be unswappable -- allocate only as much as is needed.
  • Pinned memory can be mapped directly into CUDAspace on integrated devices or in the presence of some IOMMUs.
    • "Zero (explicit)-copy" interface (can never hide all bus delays)
  • Write-combining memory (configured via MTRRs or PATs) avoids PCI snoop requirements and maximizes linear throughput
    • Subtle side-effects; not to be used glibly or carelessly!
  • Distributes work at block granularity to Texture Processing Clusters (TPCs).

Texture Processing Cluster

Streaming Multiprocessors (SMs) are grouped into TPCs. Each TPC contains some number of SMs and a single texture processing unit, including a few filters and a cache for texture memory. The details of these texture caches have not generally been publicized, but NVIDIA optimization guides confirm 1- and 2-dimensional spatial caching to be in effect.

Streaming Multiprocessor

  • Each SM has a register file, fast local (shared) memory, a cache for constant memory, an instruction cache (ROP), a multithreaded instruction dispatcher, and some number of Stream Processors (SPs).
    • 8K registers for compute capability <= 1.1, otherwise
    • 16K for compute capability <= 1.3, otherwise
    • 32K for compute capability <= 2.1, otherwise
    • 64K through at least compute capability 3.5
  • A group of threads which share a memory and can "synchronize their execution to coördinate accesses to memory" (use a barrier) form a block. Each thread has a threadId within its (three-dimensional) block.
    • For a block of dimensions <Dx, Dy, Dz>, the threadId of the thread having index <x, y, z> is (x + y * Dx + z * Dy * Dx).
  • Register allocation is performed per-block, and rounded up to the nearest
    • 256 registers per block for compute capability <= 1.1, otherwise
    • 512 registers per block for compute capability <= 1.3
  • A group of blocks which share a kernel form a grid. Each block (and each thread within that block) has a blockId within its (two-dimensional) grid.
    • For a grid of dimensions <Dx, Dy>, the blockId of the block having index <x, y> is (x + y * Dx).
  • Thus, a given thread's <blockId X threadId> dyad is unique across the grid. All the threads of a block share a blockId, and corresponding threads of various blocks share a threadId.
  • Each time the kernel is instantiated, new grid and block dimensions may be provided.
  • A block's threads, starting from threadId 0, are broken up into contiguous warps having some warp size number of threads.
  • Distributes out-of-order work at warp granularity across SPs.
    • One program counter per warp -- divergence within warp leads to serialization.
    • Divergence is trivially supported with a per-warp stack; warps reconverge at immediate post-dominators of branches
  • Supports some maximum number of blocks and threads (~8 and ~768 on G80).

Block sizing

FIXME: review/verify this!

How tightly can we bound the optimal block size T, given a warp size w? The number of threads per block ought almost always be a multiple of w, both to:

  • facilitate coalescing (coalescing requirements are related to w/2), and
  • maximize utilization of SPs within warp-granular scheduling.

A SM has r registers and s words of shared memory, allocated per-block (see above). Assuming that w threads can be supported (i.e., that none requires more than r/w registers or s/w words of shared memory), the most obvious lower bound is w itself. The most obvious upper bound, assuming arbitrary available work, is the greatest multiple of w supported by hardware (and, obviously, the SDK). A block must be scheduled to an SM, which requires:

  • registers sufficient to support the block,
  • shared memory sufficient to support the block,
  • that the total number of threads not exceed some limit t (likely bounding the divergence-tracking stacks), and
  • that the total number of blocks not exceed some limit b (likely bounding the warp-scheduling complexity).

A given SM, then, supports T values through the minimum of {r/Thrreg, s/Blkshmem, and t}; as the block requires fewer registers and less shared memory, the upper bound converges to t.

Motivations for larger blocks include:

  • freedom in the b dimension exposes parallelism until t <= b * T
  • larger maximum possible kernels (an absolute limit exists on grid dimensions)
  • better if data can be reused among threads (e.g. in tiled matrix multiply)

Motivations for smaller blocks include:

  • freedom in the t dimension exposes parallelism until t >= b * T
  • freedom in the r and s dimensions exposes parallelism until r >= b * T * Thrreg or s >= b * Blkshmem.
  • cheaper per-block operations(?) (__syncthreads(), voting, etc)
  • support for older hardware and SDKs
  • fairer distribution among SMs and thus possibly better utilization, lower latency
    • relative speedup tends to 0 as work grows arbitrarily on finite SMs
    • relative speedup tends to 1/Fracpar on infinitely many SMs

We can now optimize occupancy for a specific {t, b, r and s}, assuming t to be a multiple of both w and b:

  • Let T = t / b. T is thus guaranteed to be the smallest multiple of w such that t == b * T.
  • Check the r and w conditions. FIXME: handle reduction
  • FIXME: handle very large (external) kernels

Optimizing for ranges of hardware values is left as an exercise for the reader. Occupancy is only worth optimizing if the number of warps are insufficient to hide latencies. It might be possible to eliminate latencies altogether by reusing data throughout a block via shared memory; if the algorithm permits, this is almost certainly a net win. In that case, we likely want to maximize Blkshmem. A more advanced theory would incorporate the arithmetic intensity of a kernel...FIXME

Stream Processor

  • In-order, multithreaded processor: memory latencies can be hidden only by TLP, not ILP.
    • UPDATE Vasily Volkov's awesome GTC 2010 paper, "Better Performance at Lower Occupancy", destroys this notion.
      • Really. Go read Vasily's paper. It's better than anything you'll find here.
    • Arithmetic intensity and parallelism are paramount!
    • Memory-bound kernels require sufficiently high occupancy (the ratio of concurrently-running warps to maximum possible concurrent warps (as applied, usually, to SMs)) to hide latency.
  • No branch prediction or speculation. Full predication.
Memory type PTX name Sharing Kernel access Host access Cache location Adddressable
Registers .reg Per-thread Read-write None None No
Special registers .sreg varies Read-only None None No
Local memory .local Per-thread Read-write None None Yes
Shared memory .shared Per-block Read-write None None Yes
Global memory .global Global Read-write Read-write 1.x: None

2.0+: L1 on SM, L2 on TPC(?)

Yes
Constant memory .const Per-grid Read Read-write Stream multiprocessor Yes
Texture memory .tex Global Read Read-write Texture processing cluster texture API
Parameters (to grids or functions) .param Per-grid (or per-thread) Read-only (or read-write) None None Yes (or restricted)

Compute Capabilities

The original public CUDA revision was 1.0, implemented on the NV50 chipset corresponding to the GeForce 8 series. Compute capability, formed of a non-negative major and minor revision number, can be queried on CUDA-capable cards. All revisions thus far have been fowards-compatible, though recent CUDA toolkits will not generate code for CC1 or 2.

Resource 1.0 SM 1.1 SM 1.2 SM 1.3 SM 2.0 SM 2.1 SM 3.0 SMX 3.5 SMX 7.0 SM 7.5 SM
CUDA cores 8 8 8 8 32 48 192 192 64/32
64/8
64/2
64/8
Schedulers 1 1 1 1 2 2 4 4 4 4
Insts/sched 1 1 1 1 1 2 2 2 1 1
Threads 768 768 1K 1K 1536 1536 2K 2K 2K 1K
Warps 24 24 32 32 48 48 64 64 64 32
Blocks 8 8 8 8 8 8 16 16 32 16
32-bit regs 8K 8K 16K 16K 32K 32K 64K 64K 64K 64K
Examples G80 G9x GT21x GT200 GF110 GF10x GK104 GK110 GV100 TU10x
Revision Changes
1.1
  • Atomic ops on 32-bit global integers.
  • Breakpoints and other debugging support.
1.2
  • Atomic ops on 64-bit global integers and 32-bit shared integers.
  • 32 warps (1024 threads) and 16K registers per multiprocessor (MP).
  • Vote instructions.
  • Three MPs per Texture Processing Cluster (TPC).
  • Relaxed memory coalescing constraints.
1.3
  • Double-precision floating point at 32 cycles per operation.
2.0
  • 32 cores per SM
  • 4 SFUs
  • Atomic addition on 32-bit global and shared FP.
  • 48 warps (1536 threads), 48K shared memory banked 32 ways, and 32K registers per MP.
  • 512K local memory per thread.
  • __syncthreads_{count,and,or}(), __threadfence_system(), and __ballot().
  • 1024 threads per block and blockIdx.{x,y} values ranging through 1024.
  • Larger texture references.
  • PTX 2.0
    • Efficient uniform addressing (ldu)
    • Unified address space: isspacep/cvta
    • Prefetching: prefetch/prefetchu
    • Cache modifiers on loads and stores: .ca, .cg, .cs, .lu, .cv
    • New integer ops: popc/clz/bfind/brev/bfe/bfi
    • Video ops: vadd, vsub, vabsdiff, vmin, vmax, vshl, vshr, vmad, vset
    • New special registers: nsmid, clock64, ...).
2.1
  • 48 cores per SM
  • 8 SFUs per SM, 8 TFUs per ROP
  • 2 warp schedulers per SM, capable of issuing two instructions per clock
3.0
  • 192 cores per SMX
  • 32 SFUs per SMX, 32 TFUs per ROP
  • 4 warp schedulers per SMX, capable of issuing two instructions per clock
  • Double-precision instructions can be paired with non-DP
    • Previously, double-precision instructions couldn't be paired with anything
  • PTX 3.0
    • madc and mad.cc instructions
    • Cubemaps and cubearrays for the tex instruction
    • 3D surfaces via the suld.b.3d and sust.b.3d instructions
    • pmevent.mask to trigger multiple performance counters
    • 64-bit grid IDs
    • 4 more performance counters, for a total of 8
    • DWARF debugging symbols support
3.5
  • 255 registers per thread
  • "CUDA Dynamic Parallelism", the ability to spawn threads from within device code
  • PTX 3.1
    • A funnel shift instruction, shf
    • Loading read-only global data through the non-coherent texture cache, ld.global.nc
    • 64-bit atomic/reduction operators extended to {or, xor, and, integer min, integer max}
    • Mipmap type support
    • Indirect texture/surface support
    • Extends generic addressing to include the const state space
7.0
  • PTX 6.3
  • Tensor cores
  • Independent thread scheduling
7.5
  • PTX 6.4
  • Integer matrix multiplication in tensor cores

PTX

Syntax Coloring

PTX with syntax coloring

I've got a vim syntax coloring file for PTX/NVIR/SASS at https://raw.github.com/dankamongmen/dankhome/master/.vim/syntax/nvir.vim. It operates by coloring all registers congruent to some integer mod 10 the same color:

syn match asmReg0	"v\?R[0-9]*0\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmReg1	"v\?R[0-9]*1\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmReg2	"v\?R[0-9]*2\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmReg3	"v\?R[0-9]*3\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmReg4	"v\?R[0-9]*4\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmReg5	"v\?R[0-9]*5\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmReg6	"v\?R[0-9]*6\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmReg7	"v\?R[0-9]*7\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmReg8	"v\?R[0-9]*8\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmReg9	"v\?R[0-9]*9\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmPReg	"P[0-9]\([0-9]*\)\(\.B\|\.F\|\.U\?\(I\|L\)\|\([^0-9]\)\@=\)"
syn match asmBB		"BB[0-9][0-9]*\(_\d\d*\)\?"
syn match asmBBNew	"BB-\d\d*"
syn match nvirNT	".NEXT_TRUE.*"
syn match nvirNF	".NEXT_FALSE.*"
syn match hexconst	"0x\x\+\(\.F\|\.U\?\(I\|L\)\)\?"
syn match spreg		"\(ctaid\|ntid\|tid\|nctaid\).\(x\|y\|z\)"

Building CUDA Apps

nvcc flags

Pass flags to ptxas via -X:

  • -X -v displays per-thread register usage
  • -X -abi=no disables the PTX ABI, saving registers but taking away your stack
  • -dlcm={cg,cs,ca} modifies cache behavior for loads
  • -dscm={cw,cs} modifies cache behavior for stores

SDK's common.mk

This assumes use of the SDK's common.mk, as recommended by the documentation.

  • Add the library path to LD_LIBRARY_PATH, assuming CUDA's been installed to a non-standard directory.
  • Set the CUDA_INSTALL_PATH and ROOTDIR (yeargh!) if outside the SDK.
  • I keep the following in bin/cudasetup of my home directory. Source it, using sh's . cudasetup syntax:
CUDA="$HOME/local/cuda/"

export CUDA_INSTALL_PATH="$CUDA"
export ROOTDIR="$CUDA/C/common/"
if [ -n "$LD_LIBRARY_PATH" ] ; then
	export "LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA/lib64"
else
	export "LD_LIBRARY_PATH=$CUDA/lib64"
fi

unset CUDA
  • Set EXECUTABLE in your Makefile, and include $CUDA_INSTALL_PATH/C/common/common.mk

Unit testing

The DEFAULT_GOAL special variable of GNU Make can be used:

.PHONY: test
.DEFAULT_GOAL:=test

include $(CUDA_INSTALL_PATH)/C/common/common.mk

test: $(TARGET)
        $(TARGET)

Libraries

Two mutually exclusive means of driving CUDA are available: the "Driver API" and "C for CUDA" with its accompanying nvcc compiler and runtime. The latter (libcudart) is built atop the former, and requires its libcuda library.

Undocumented Functions

The following unlisted functions were extracted from 3.0's libcudart.so using objdump -T:

00000000000097d0 g    DF .text	000000000000020e  Base        __cudaRegisterShared
0000000000005410 g    DF .text	0000000000000003  Base        __cudaSynchronizeThreads
0000000000009e60 g    DF .text	0000000000000246  Base        __cudaRegisterVar
000000000000a0b0 g    DF .text	0000000000000455  Base        __cudaRegisterFatBinary
00000000000095c0 g    DF .text	000000000000020e  Base        __cudaRegisterSharedVar
0000000000005420 g    DF .text	0000000000000002  Base        __cudaTextureFetch
000000000000a510 g    DF .text	00000000000009dd  Base        __cudaUnregisterFatBinary
00000000000099e0 g    DF .text	000000000000024e  Base        __cudaRegisterFunction
0000000000005820 g    DF .text	000000000000001c  Base        __cudaMutexOperation
0000000000009c30 g    DF .text	000000000000022e  Base        __cudaRegisterTexture

deviceQuery info

  • Memory shown is that amount which is free; I've substituted total VRAM.
  • Most CUDA devices can switch between multiple frequencies; the "Clock rate" output ought be considered accurate only at a given moment, and the outputs listed here are merely illustrative.
  • Three device modes are currently supported:
    • 0: Default (multiple applications can use the device)
    • 1: Exclusive (only one application may use the device; other calls to cuCtxCreate will fail)
    • 2: Disabled (no applications may use the device; all calls to cuCtxCreate will fail
  • The mode can be set using nvidia-smi's -c option, specifying the device number via -g.
  • A run time limit is activated by default if the device is being used to drive a display.
  • Please feel free to send me output!


Device name Memory MP's Cores Shmem/block Reg/block Warp size Thr/block Texalign Clock C+E? Integrated? Shared maps?
Compute capability 7.0
Tesla V100 16GB 84 5376/2688/672 1.53GHz Yes No Yes
Compute capability 3.0
GeForce GTX 680 1.5GB 8 1536 Yes No Yes
Compute capability 2.1
GeForce GTX 560 Ti
GeForce GTX 550 Ti
GeForce GTX 460 1GB 7 224 48k 32k 32 1024 512b 1.35GHz Yes No Yes
GeForce GTS 450
Compute capability 2.0
GeForce GTX 580 1.5GB 16 512 32 1024 1.544GHz Yes No Yes
Tesla C2050 (*CB) 3GB 14 448 48k 32k 32 1024 512b 1.15GHz Yes No Yes
Tesla C2070 (*CB) 6GB 14 448 48k 32k 32 1024 512b 1.15GHz Yes No Yes
GeForce GTX 480 1536MB 15 480
GeForce GTX 470 1280MB 14 448
Compute capability 1.3
Tesla C1060 4GB 30 240 16384b 16384 32 512 256b 1.30GHz Yes No Yes
GeForce GTX 295 1GB 30 240 16384b 16384 32 512 256b 1.24GHz Yes No Yes
GeForce GTX 285 1GB 30 240 16384b 16384 32 512 256b 1.48GHz Yes No Yes
GeForce GTX 280 1GB 30 240 16384b 16384 32 512 256b 1.30GHz Yes No Yes
GeForce GTX 260 1GB 27 216 16384b 16384 32 512 256b 1.47GHz Yes No Yes
Compute capability 1.2
GeForce GT 360M 1GB 12 96 16384b 16384 32 512 256b 1.32GHz Yes No Yes
GeForce 310 512MB 2 16 16384b 16384 32 512 256b 1.40GHz Yes No Yes
GeForce 240 GT 1GB 12 96 16384b 16384 32 512 256b 1.424GHz Yes No Yes
Compute capability 1.1
ION 256MB 2 16 16384b 8192 32 512 256b 1.1GHz No Yes Yes
Quadro FX 570 256MB 2 16 16384b 8192 32 512 256b 0.92GHz Yes No No
GeForce GTS 250 (*JR) 1G 16 128 16384b 8192 32 512 256b 1.84GHz Yes No No
GeForce 9800 GTX 512MB 16 128 16384b 8192 32 512 256b 1.67GHz Yes Yes Yes
GeForce 9600 GT 512MB 8 64 16384b 8192 32 512 256b 1.62GHz,

1.50GHz

Yes No No
GeForce 9400M 256MB 2 16 16384b 8192 32 512 256b 0.88GHz No No No
GeForce 8800 GTS 512 512MB 16 128 16384b 8192 32 512 256b 1.62GHz Yes No No
GeForce 8600 GT 256MB 4 32 16384b 8192 32 512 256b 0.95GHz Yes No No
GeForce 9400M 512MB 1 8 16384b 8192 32 512 256b 1.40GHz No No No

(*CB) Thanks to Cameron Black for this submission! (*JR) Thanks to Javier Ruiz for this submission!

See Also