Check out my first novel, midnight's simulacra!

Compiler Design: Difference between revisions

From dankwiki
No edit summary
Line 23: Line 23:


==Dependency Analysis==
==Dependency Analysis==
* "[http://portal.acm.org/citation.cfm?id=255129.255158 On the perfect accuracy of an approximate subscript analysis test]" (Klappholz, Psarris, Kong, 1990) analyzes the GCD and Banerjee inequalities, explaining the crappiness of the former and general robustness of the latter. "[http://portal.acm.org/citation.cfm?id=110518.110525&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618 On the Accuracy of the Banerjee Test]" (same authors, 1991) suggests improvements on the Banerjee test.
* "[http://portal.acm.org/citation.cfm?id=143129&dl=GUIDE&coll=GUIDE&CFID=31575025&CFTOKEN=24090323 Eliminating False Data Dependencies using the Omega Test]" (Pugh, Wonnacott, 1992) moves from integer programming-based (Diophantine) solutions to a subclass of the [http://en.wikipedia.org/wiki/Presburger_arithmetic Presburger formulae].


==See Also==
==See Also==
* [http://scienceblogs.com/goodmath/2007/10/computing_strongly_connected_c.php Computing Strongly Connected Subgraphs] from [http://scienceblogs.com/goodmath Good Math, Bad Math]
* [http://scienceblogs.com/goodmath/2007/10/computing_strongly_connected_c.php Computing Strongly Connected Subgraphs] from [http://scienceblogs.com/goodmath Good Math, Bad Math]
* "[http://portal.acm.org/citation.cfm?id=255129.255158 On the perfect accuracy of an approximate subscript analysis test]" (Klappholz, Psarris, Kong, 1990) analyzes the GCD and Banerjee inequalities, explaining the crappiness of the former and general robustness of the latter. "[http://portal.acm.org/citation.cfm?id=110518.110525&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618 On the Accuracy of the Banerjee Test]" (same authors, 1991) suggests improvements on the Banerjee test.
* "[http://portal.acm.org/citation.cfm?id=143129&dl=GUIDE&coll=GUIDE&CFID=31575025&CFTOKEN=24090323 Eliminating False Data Dependencies using the Omega Test]" (Pugh, Wonnacott, 1992) moves from integer programming-based (Diophantine) solutions to a subclass of the [http://en.wikipedia.org/wiki/Presburger_arithmetic Presburger formulae].