
Project Report for CSE 6230
“High Performance Computing Tools and Applications”

Epicycles, Flywheels, and (Widening) Gyres:

UNIX I/O and its Slouch Towards Multicore NUMA
Nick Black

Professor Rich Vuduc, Fall 2009

1

“Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of

the beginning.”—Winston Churchill (1942-11-10)

1 Evaluation Redux

The libtorque project proposal listed a number of high-level objectives. As of 2009-12-10, work has been
broken down into 75 bugs of widely ranging complexity (35 remain open1). System detection on x86 is
complete and authoritative. The basic event wrapper set has been defined and implemented, and “first light”
(a cpu-balanced, parallel event-driven application2, despite no concept of threading calls in the application
itself) was achieved 2009-11-17. These two subsystems, currently isolated, will be joined together over the
course of next semester’s CSE 8903.

The lofty end goals (high-performance, easily-programmed UNIX I/O) of this project are open-ended3.
Major practical goals were described in the proposal’s “Evaluation” section, but can be summed up in two
statements:

1. An event-driven, (independent) continuations-passing-style implementation ought see performance
scale linearly across hardware when augmented with libtorque4: libtorque scales arbitrarily.

2. The same callbacks, manually threaded using existing event libraries, ought be strictly outperformed by
a single libtorque context (despite the simpler interface). As flow uniformity decreases, this performance
gap ought increase: libtorque is arbitrarily dynamic, despite efficient implementation.

Quantifying and indeed even qualifying success will require the actual manually-threaded implementations
for fair comparison. libtorque now provides the minimum functionality to perform such comparisons, once
the alternates are written and measurement infrastructure is established. Coarse per se analysis via oprofile
(and, yes, top) has suggested scaling through two CPUs, but breakdown as flows diverge. The first criterion
thus appears met through n = 2, but the second criterion (arbitrary dynamism) has not yet been achieved.
Furthermore, it can be expected that larger values of n will effect breakdowns in scalability (exploring this
will require more substantial hardware).

The author has became aware of two closed-source solutions similar to libtorque:

• Windows Input/Output Completion Ports

• the Solaris Event Completion Framework

Both employ continuation-passing and event distribution as a solution to I/O parallelism (the flexibility and
efficiency of their distribution mechanics are unknown, but we can assume them similar to our expectations
for libtorque). This seems confirmation of the event API’s applicability to the problem; it is thus our clever
use of hardware (and open source licensing, of course) which will distinguish libtorque’s approach.

Both the Ruby and Tcl projects are involved in similar efforts; the author is in close communication
with core Ruby developers, and hopes libtorque might fulfill their needs. If successful, this would lead to
substantial distribution of libtorque as a dependency and a dramatic increase in testing exposure. Placing
libtorque in the Ruby core is thus a major short-term goal, and rather mundane work (packaging etc) has
occupied most recent project time5.

1This does not imply 53% completion. Bug dependency trees unfold as a higher-level bug is investigated (libtorque’s longest
bug dependency chain is currently 7th order).

2The torquessl SSL echo server, to be precise.
3More correctly, bounded by theoretical maxima which will be nigh-impossible to reach. Establishing these theoretical

maxima (indeed establishing their units) might emerge as a substantial research extension.
4This ought be independent of continuation granularity—even a blocking I/O implementation ought see linear improvement

for uniformly distributed flows!
5I’m up in your internets, getting built on your servers, w00t.

2

http://www.churchill-society-london.org.uk/EndoBegn.html
http://dank.qemfd.net/tabpower/cse6230proposal.pdf
http://dank.qemfd.net/bugzilla/report.cgi?x_axis_field=bug_status&y_axis_field=target_milestone&z_axis_field=&query_format=report-table&short_desc_type=allwordssubstr&short_desc=&product=libtorque&longdesc_type=allwordssubstr&longdesc=&bug_file_loc_type=allwordssubstr&bug_file_loc=&status_whiteboard_type=allwordssubstr&status_whiteboard=&deadlinefrom=&deadlineto=&bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&bug_status=RESOLVED&bug_status=VERIFIED&bug_status=CLOSED&emailassigned_to1=1&emailtype1=substring&email1=&emailassigned_to2=1&emailreporter2=1&emailcc2=1&emailtype2=substring&email2=&bugidtype=include&bug_id=&chfieldfrom=&chfieldto=Now&chfieldvalue=&format=table&action=wrap&field0-0-0=noop&type0-0-0=noop&value0-0-0=
http://github.com/dankamongmen/libtorque/commit/518186b0e240302d36ff826af5294f4551e748eb
http://msdn.microsoft.com/en-us/library/aa365198%28VS.85%29.aspx
http://developers.sun.com/solaris/articles/event_completion.html
http://dank.qemfd.net/bugzilla/showdependencygraph.cgi?id=40&showsummary=on&display=doall&rankdir=LR

2 Methodology

A reductionist implementation suggests five distinct, linearly-dependent phases:

1. Implement a single-threaded callback engine.

2. Expose an event wrapper API, built atop the callback engine.

3. Parallelizing the callback engine.

4. System discovery and associated callback engine optimization.

5. Expose a richer client API, built atop system discovery.

This may well have achieved the main goals more quickly, but another ordering exists, one which maxi-
mizes external utility. The system discovery component is tremendously useful by itself; despite representing
only an optimization overall, it was thus implemented (and made publicly available) first. Releasing a “1.0”
of the library has an operational effect: the shared object version steps forward into 1.0, and thus an implicit
contract regarding API (newer 1.x versions may augment, but not otherwise modify, the API). It was thus
desirable to define the minimal API as early as possible.

That API exists, and is exported by libtorque.h. Several proof-of-concept tools have been developed or
are planned: torquessl has been mentioned, while parallel inotifty, packet queueing to userspace, large-
scale dns resolution/testing are in the works. The author hopes to embed libtorque into Fyodor’s popular
and versatile nmap tool soon after a 1.0 release (nmap holding a cherished place in my heart, and being in
desperate need of better parallelism).

3 Toward a 1.0

A 1.0 release is targeted around Christmas6. The major efforts of this next semester will be:

• Explore scalability and engage any bottlenecks we find. I believe resource bottlenecks have been largely
anticipated: file descriptors, timers, and signals are respectively O(lgn), O(1) and O(1) on CPUs (all
are O(1) on memory nodes). I have proved the userspace, at all scales, to be weakly wait-free in the
limit7.

• Begin quantifying event distribution. I’d very much like to include the Windows and Solaris contenders
in this measurement. I don’t have any idea of how Windows programming works, and had hoped to
avoid it forever. It appears to be a prerequisite for use in any number of projects, however (Ruby and
nmap being two). Argh. . .

• Start coming up with the expanded client API. This is largely disconnected from other aspects of the
project, meaning it can be arbitrarily delayed. It’s also, however, a fascinating subcomponent and
potentially a real differentiator. Furthermore, it’s another useful component in and of itself. I’d like to
get working on this sooner rather than later; it seems the real HPC core.

6The documentation needs be brought up-to-date, but the infrastructure is there; libtorque(3) is attached.
7That is, whenever there’s more time spent handling than dequeueing events (true for all libtorque cases save trivial work

or grossly inefficient kernelspaces (yes, select or poll constitute the grotesque), it’s unlikely that threads contend. Progress
cessation can result only due to external suspension of a thread holding a lock; aside from this possibility, libtorque is strongly
lock-free.

3

1 #ifndef LIBTORQUE LIBTORQUE
2 #define LIBTORQUE LIBTORQUE
3
4 #ifdef c p l u s p l u s
5 extern ”C” {
6 #endif

7
8 #include <s i g n a l . h>

9
10 struct i t ime r sp e c ;
11 struct l i b t o r qu e c t x ;
12 struct l i b t o r qu e cb c t x ;
13
14 // I n i t i a l i z e the l i b r a r y , r e tu rn ing 0 on succe s s . No l i b t o r q u e f unc t i on s may
15 // be c a l l e d b e f o r e a s u c c e s s f u l c a l l to l i b t o r q u e i n i t () . l i b t o r q u e i n i t () may
16 // not be c a l l e d again u n t i l l i b t o r q u e s t o p () has been c a l l e d . Imp l i c i t l y , on ly
17 // one thread may c a l l l i b t o r q u e i n i t () .
18 // Create a new l i b t o r q u e con t ex t on the curren t cpuse t . The b e s t performance
19 // on the w ide s t s e t o f l oads and requirements i s ach ieved by us ing one
20 // l i b t o r q u e in s tance on as many uncontes ted proce s s ing e lements as p o s s i b l e ,
21 // but var ious reasons e x i s t f o r running mu l t i p l e i n s t ance s :
22 //
23 // − Di f f e r e n t i a t e d s e r v i c e s (QoS) : Se t s o f connec t ions cou ld be guaranteed
24 // s e t s o f p roce s s ing e lements
25 // − Combination o f mu l t i p l e (p o s s i b l y c losed−source) l i b t o r q u e c l i e n t s
26 // − l i b t o r q u e ’ s schedu l ing , e s p e c i a l l y i n i t i a l l y , i s l i k e l y to be subob t ima l
27 // f o r some a r c h i t e c t u r e + code combinat ions ; c e r t a i n s i t u a t i o n s might be
28 // improved us ing such a t echn i que (I ’ ve not go t examples , and such cases
29 // ought be c o n t r o l l a b l e v ia h i n t s / f e edback s / h e u r i s t i c s) .
30 // − Trading performance f o r f a u l t−t o l e r anc e (pu t t i n g l e s s−e s s e n t i a l e ven t s in
31 // t h e i r own l i b t o r q u e ” r ing ” in case o f l o c k ups in buggy c a l l b a c k s , us ing
32 // d i s t i n c t a l t e r n a t e s i g n a l s t a c k s . . .) .
33 // − Trading performance f o r p r i o r i t y s epara t i on (see s c h e d s e t s c h e du l e r ()) .
34 //
35 // I f mu l t i p l e i n s t ance s are used , the h i g h e s t performance w i l l g e n e r a l l y be
36 // had running them a l l wi th as l a r g e a cpuse t as p o s s i b l e (ie , o v e r l app ing
37 // cpuse t s are no problem , and u s ua l l y d e s i r a b l e) . Again , make sure you r e a l l y
38 // want to be us ing mu l t i p l e i n s t ance s .
39 struct l i b t o r qu e c t x ∗ l i b t o r q u e i n i t (void)
40 a t t r i b u t e ((v i s i b i l i t y (” d e f au l t ”)))
41 a t t r i b u t e ((warn unused resu l t))
42 a t t r i b u t e ((mal loc)) ;
43
44 // Mu l t i p l e th reads may add event sources to a l i b t o r q u e in s tance concurrent l y ,
45 // so long as they are not adding the same event source (ie , the c a l l e r s must
46 // be a b l e to guarantee the s i gna l s , fds , whatever are not the same) . The
47 // r e g i s t r a t i o n implementat ion i s lock− and indeed wait−f r e e .
48
49 // Read c a l l b a c k s g e t a t r i a d : our c a l l b a c k s t a t e , and t h e i r own . Ours i s j u s t
50 // as opaque to them as t h e i r s i s to us .
51 typedef int (∗ l i b t o r qu e r cb) (int , struct l i b t o r qu e cb c t x ∗ ,void ∗) ;
52 typedef int (∗ l ibtorquewcb) (int , void ∗) ;
53
54 // Invoke the c a l l b a c k upon r e c e i p t o f any o f the s p e c i f i e d s i g n a l s .
55 int l i b t o r qu e add s i g n a l (struct l i b t o r qu e c t x ∗ , const s i g s e t t ∗ , l i b to rque r cb , void ∗)
56 a t t r i b u t e ((v i s i b i l i t y (” d e f au l t ”)))

4

57 a t t r i b u t e ((warn unused resu l t))
58 a t t r i b u t e ((nonnul l (1 , 2 , 3))) ;
59
60 // Af ter a minimum time i n t e r v a l , invoke the c a l l b a c k as soon as p o s s i b l e .
61 int l i b t o rque addt imer (struct l i b t o r qu e c t x ∗ , const struct i t ime r sp e c ∗ , l i b to rque r cb , void ∗)
62 a t t r i b u t e ((v i s i b i l i t y (” d e f au l t ”)))
63 a t t r i b u t e ((warn unused resu l t))
64 a t t r i b u t e ((nonnul l (1 , 2 , 3))) ;
65
66 // Watch f o r even t s on the s p e c i f i e d f i l e d e s c r i p t o r , and invoke the c a l l b a c k s .
67 int l i b t o rque add fd (struct l i b t o r qu e c t x ∗ , int , l i b to rque r cb , l ibtorquewcb , void ∗)
68 a t t r i b u t e ((v i s i b i l i t y (” d e f au l t ”)))
69 a t t r i b u t e ((warn unused resu l t))
70 a t t r i b u t e ((nonnul l (1))) ;
71
72 // The same as l i b t o r q u e a dd f d un bu f f e r e d , but manage b u f f e r i n g in the
73 // app l i c a t i on , c a l l i n g back immediate ly on a l l e ven t s . This i s (c u r r en t l y) the
74 // p r e f e r r ed methodology f o r accep t (2) ing s o c k e t s .
75 int l i b t o rque add fd unbu f f e r ed (struct l i b t o r qu e c t x ∗ , int , l i b to rque r cb ,
76 l ibtorquewcb , void ∗)
77 a t t r i b u t e ((v i s i b i l i t y (” d e f au l t ”)))
78 a t t r i b u t e ((warn unused resu l t))
79 a t t r i b u t e ((nonnul l (1))) ;
80
81 // Watch f o r even t s on the s p e c i f i e d path , and invoke the c a l l b a c k .
82 int l i b to rque addpath (struct l i b t o r qu e c t x ∗ , const char ∗ , l i b to rque r cb , void ∗)
83 a t t r i b u t e ((v i s i b i l i t y (” d e f au l t ”)))
84 a t t r i b u t e ((warn unused resu l t))
85 a t t r i b u t e ((nonnul l (1 , 2 , 3))) ;
86
87 #ifndef LIBTORQUE WITHOUT SSL
88 #include <opens s l / s s l . h>

89 // The SSL CTX shou ld be s e t up wi th the de s i r ed au t h en t i c a t i on parameters e t c
90 // a l r eady (u t i l i t y f unc t i on s are prov ided to do t h i s) .
91 int l i b t o r q u e add s s l (struct l i b t o r qu e c t x ∗ , int , SSL CTX ∗ , l i b to rque r cb ,
92 l ibtorquewcb , void ∗)
93 a t t r i b u t e ((v i s i b i l i t y (” d e f au l t ”)))
94 a t t r i b u t e ((warn unused resu l t))
95 a t t r i b u t e ((nonnul l (1 , 3))) ;
96 #endif

97
98 // Wait u n t i l t he l i b t o r q u e threads e x i t v i a p t h r e ad j o i n () , but don ’ t send
99 // them the terminat ion s i g n a l o u r s e l v e s . Rather , we ’ re wa i t ing f o r e i t h e r an

100 // i n t e n t i o n a l or f r ea k e x i t o f the th reads . This ve r s i on i s s l i g h t l y more
101 // robus t than c a l l i n g l i b t o r q u e s t o p () from an e x t e rna l c on t r o l thread , in
102 // t ha t the th reads ’ e x i t w i l l r e s u l t in immediate program progre s s i on . With
103 // the o ther method , the th reads cou ld die , but your con t r o l th reads i s s t i l l
104 // running ; i t ’ s in a s i gwa i t () or something , not a p t h r e ad j o i n () (which would
105 // succeed immediate ly) . The contex t , and a l l o f i t s data , are des t royed .
106 int l i b t o r qu e b l o c k (struct l i b t o r qu e c t x ∗)
107 a t t r i b u t e ((v i s i b i l i t y (” d e f au l t ”))) ;
108
109 // S i gna l and reap the running threads , and f r e e the con t ex t .
110 int l i b t o r qu e s t o p (struct l i b t o r qu e c t x ∗)
111 a t t r i b u t e ((v i s i b i l i t y (” d e f au l t ”))) ;
112

5

113 #ifdef c p l u s p l u s
114 }
115 #endif

116
117 #endif

6

LIBTORQUE(3) libtorqueAPI summary LIBTORQUE(3)

NAME
libtorque − High−performance I/O and primitives

SYNOPSIS
int libtorque_init(void);

int libtorque_stop(void);

DESCRIPTION
libtorque provides the tools necessary for cross−platform high−performance computing and I/O via
continuations, scaling from single processors to manycore NUMA architectures. This includes discovery of
processing elements, memories, and topology, multithreaded use of edge−triggered, scalable event
notification, unification of event sources, advanced scheduling based on architecture−aware allocator, and
sophisticated buffering.

BUGS
Searchhttp://dank.qemfd.net/bugzilla/buglist.cgi?product=libtorque. Mail bug reports and/or patches
to the authors.

SEE ALSO
madvise(2), mincore(2), mmap(2), mprotect(2), posix_memalign(3), sendfile(2), sigaction(2)

On Linux:aio(3), CPU_SET(3), epoll(4), libcpuset(3), numa(3), numa(7), pthreads(7),
sched_getaffinity(2), sched_setaffinity(2), signalfd(2), splice(2), timerfd_create(2)

On FreeBSD:aio(4), cpuset_getaffinity(2), cpuset_setaffinity(2), kqueue(2), pthread(3)

GitHub:http://dank.qemfd.net/dankwiki/index.php/Libtorque

Project wiki:http://github.com/dankamongmen/libtorque

AUTHOR
Nick Black <dank@qemfd.net>

Design and implementation.

COPYRIGHT
Copyright © 2009 Nick Black

libtorque 0.0.1 12/07/2009 1

7

	Evaluation Redux
	Methodology
	Toward a 1.0

