Check out my first novel, midnight's simulacra!

InaMORata 2.0: Difference between revisions

From dankwiki
No edit summary
Line 33: Line 33:
* SATA splitter takes 12V+5V to CODI6 + SATA splitter
* SATA splitter takes 12V+5V to CODI6 + SATA splitter
* SATA splitter takes 12V to 2x pumps
* SATA splitter takes 12V to 2x pumps
* CODI6 takes 12V (via fan hookup) and 5V (via ARGB hookup) to 3x rightmost fans.
* 3x rightmost fans take 12V+5V to corresponding 3x middle fans.
* 3x middle fans takes 12V+5V to corresponding 3x leftmost fans.


We don't need to expose the 5V to the pumps, but it doesn't hurt anything.
We don't need to expose the 5V to the pumps, but it doesn't hurt anything. The CODI6 has a 5-pin wire, where three pins (12V, 5V, ground) go to a SATA connector, and two pins (tach, pwm) go to a 4-hole Molex fan connector. This connector doesn't carry 12V or ground like a 4-wire Molex would.
 
At this point, we have three hookups unconnected: the three Molex 4-hole connectors coming off the pumps and CODI6. Each has a tach and PWM signal, and none are drawing power. Hook them up to the perfboard's Molex 4-pin headers.

Revision as of 07:02, 1 May 2024

In 2024, I redesigned the InaMORAta to use 5v ARGB fans (the previous design used 12v RGB fans). I also significantly simplified the electronics.

Components

  • Mo-Ra3 420mm radiator plus front cover
  • 9x 140mm Arctic P14 ARGB 140mm fans
  • 12V AC adapter rated for at least 9A (108W)
  • 12V->5V buck converter rated for at least 5A (25W) output
  • CODI6 (controls ARGB, distributes 12V+5V power to fans)
  • 2x SATA splitters
  • One SATA power cable (4 wires)
  • 4x heatshrink solder tubes
  • EKWB EK-XTOP dual D5 pump
  • Perfboard, onto which is soldered:
    • Espressif ESP-WROOM-32S microcontroller (controls fans, sensors, provides MMQT+WiFi)
    • 4.7kΩ resistor
    • 3x 0.1nF ceramic capacitors
    • 3x 10kΩ resistors
    • 3x 3.3kΩ resistors
    • 3x Molex 4-pin fan headers
    • DS18B20 digital thermistor

You'll need a hot air gun and a soldering iron (plus whatever you use to assemble the Mo-Ra, and attach things to it).

Power

We have power requirements at both 12V and 5V, ultimately sourced at 12V. The 12 LEDs of each PF-14 take 0.4A at 5V. With 9 of them, that's 18W. The ESP32 will also draw 5V, but not more than a watt. Assume 90% efficiency for a total of 20.4 input watts. At 12V, we have 23W to each of our pumps (46W total). Each fan takes 0.17A of 12V, and thus 9 draw 18.36W. That's 64.36W and 20.4W, a total of 84.76W. 85W at 12V requires just over 7A.

  • 12V AC adapter runs to barreljack on/off switch
  • On/off switch takes 12V to SATA and buck converter
    • The two sets of three wires are connected with two heatshrink solder tubes
  • Buck converter takes 5V to SATA
    • The two sets of two wires are connected with two heatshrink solder tubes
  • SATA takes 12V+5V to SATA splitter
  • SATA splitter takes 12V+5V to CODI6 + SATA splitter
  • SATA splitter takes 12V to 2x pumps
  • CODI6 takes 12V (via fan hookup) and 5V (via ARGB hookup) to 3x rightmost fans.
  • 3x rightmost fans take 12V+5V to corresponding 3x middle fans.
  • 3x middle fans takes 12V+5V to corresponding 3x leftmost fans.

We don't need to expose the 5V to the pumps, but it doesn't hurt anything. The CODI6 has a 5-pin wire, where three pins (12V, 5V, ground) go to a SATA connector, and two pins (tach, pwm) go to a 4-hole Molex fan connector. This connector doesn't carry 12V or ground like a 4-wire Molex would.

At this point, we have three hookups unconnected: the three Molex 4-hole connectors coming off the pumps and CODI6. Each has a tach and PWM signal, and none are drawing power. Hook them up to the perfboard's Molex 4-pin headers.