Check out my first novel, midnight's simulacra!

InaMORata 2.0: Difference between revisions

From dankwiki
Line 19: Line 19:
** 3x Molex 4-pin fan headers
** 3x Molex 4-pin fan headers
** DS18B20 digital thermistor
** DS18B20 digital thermistor
* USB-C header with pigtails


You'll need a hot air gun and a soldering iron (plus whatever you use to assemble the Mo-Ra, and attach things to it).
You'll need a hot air gun and a soldering iron (plus whatever you use to assemble the Mo-Ra, and attach things to it).

Revision as of 07:02, 1 May 2024

In 2024, I redesigned the InaMORAta to use 5v ARGB fans (the previous design used 12v RGB fans). I also significantly simplified the electronics.

Components

  • Mo-Ra3 420mm radiator plus front cover
  • 9x 140mm Arctic P14 ARGB 140mm fans
  • 12V AC adapter rated for at least 9A (108W)
  • 12V->5V buck converter rated for at least 5A (25W) output
  • CODI6 (controls ARGB, distributes 12V+5V power to fans)
  • 2x SATA splitters
  • One SATA power cable (4 wires)
  • 4x heatshrink solder tubes
  • EKWB EK-XTOP dual D5 pump
  • Perfboard, onto which is soldered:
    • Espressif ESP-WROOM-32S microcontroller (controls fans, sensors, provides MMQT+WiFi)
    • 4.7kΩ resistor
    • 3x 0.1nF ceramic capacitors
    • 3x 10kΩ resistors
    • 3x 3.3kΩ resistors
    • 3x Molex 4-pin fan headers
    • DS18B20 digital thermistor
  • USB-C header with pigtails

You'll need a hot air gun and a soldering iron (plus whatever you use to assemble the Mo-Ra, and attach things to it).

Power

We have power requirements at both 12V and 5V, ultimately sourced at 12V. The 12 LEDs of each PF-14 take 0.4A at 5V. With 9 of them, that's 18W. The ESP32 will also draw 5V, but not more than a watt. Assume 90% efficiency for a total of 20.4 input watts. At 12V, we have 23W to each of our pumps (46W total). Each fan takes 0.17A of 12V, and thus 9 draw 18.36W. That's 64.36W and 20.4W, a total of 84.76W. 85W at 12V requires just over 7A.

  • 12V AC adapter runs to barreljack on/off switch
  • On/off switch takes 12V to SATA and buck converter
    • The two sets of three wires are connected with two heatshrink solder tubes
  • Buck converter takes 5V to SATA
    • The two sets of two wires are connected with two heatshrink solder tubes
  • SATA takes 12V+5V to SATA splitter
  • SATA splitter takes 12V+5V to CODI6 + SATA splitter
  • SATA splitter takes 12V to 2x pumps
  • CODI6 takes 12V (via fan hookup) and 5V (via ARGB hookup) to 3x rightmost fans.
  • 3x rightmost fans take 12V+5V to corresponding 3x middle fans.
  • 3x middle fans takes 12V+5V to corresponding 3x leftmost fans.

We don't need to expose the 5V to the pumps, but it doesn't hurt anything. The CODI6 has a 5-pin wire, where three pins (12V, 5V, ground) go to a SATA connector, and two pins (tach, pwm) go to a 4-hole Molex fan connector. This connector doesn't carry 12V or ground like a 4-wire Molex would.

At this point, we have three hookups unconnected: the three Molex 4-hole connectors coming off the pumps and CODI6. Each has a tach and PWM signal, and none are drawing power. Hook them up to the perfboard's Molex 4-pin headers.